Follow
Pierre Gaillard
Pierre Gaillard
INRIA
Verified email at gaillard.me - Homepage
Title
Cited by
Cited by
Year
Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting
P Gaillard, Y Goude, R Nedellec
International Journal of forecasting 32 (3), 1038-1050, 2016
2162016
A second-order bound with excess losses
P Gaillard, G Stoltz, T Van Erven
Conference on Learning Theory, 176-196, 2014
1302014
Forecasting electricity consumption by aggregating specialized experts: A review of the sequential aggregation of specialized experts, with an application to Slovakian and …
M Devaine, P Gaillard, Y Goude, G Stoltz
Machine Learning 90, 231-260, 2013
1152013
Mirror descent meets fixed share (and feels no regret)
N Cesa-Bianchi, P Gaillard, G Lugosi, G Stoltz
Advances in Neural Information Processing Systems 25, 2012
812012
Forecasting electricity consumption by aggregating experts; how to design a good set of experts
P Gaillard, Y Goude
Modeling and stochastic learning for forecasting in high dimensions, 95-115, 2015
612015
A chaining algorithm for online nonparametric regression
P Gaillard, S Gerchinovitz
Conference on Learning Theory, 764-796, 2015
372015
Algorithmic chaining and the role of partial feedback in online nonparametric learning
N Cesa-Bianchi, P Gaillard, C Gentile, S Gerchinovitz
Conference on Learning Theory, 465-481, 2017
362017
A new look at shifting regret
N Cesa-Bianchi, P Gaillard, G Lugosi, G Stoltz
arXiv preprint arXiv:1202.3323, 2012
312012
Tight nonparametric convergence rates for stochastic gradient descent under the noiseless linear model
R Berthier, F Bach, P Gaillard
Advances in Neural Information Processing Systems 33, 2576-2586, 2020
272020
Accelerated gossip in networks of given dimension using Jacobi polynomial iterations
R Berthier, F Bach, P Gaillard
SIAM Journal on Mathematics of Data Science 2 (1), 24-47, 2020
262020
opera: Online prediction by expert aggregation
P Gaillard, Y Goude
URL: https://CRAN. R-project. org/package= opera. r package version 1, 2016
26*2016
Efficient improper learning for online logistic regression
R Jézéquel, P Gaillard, A Rudi
Conference on Learning Theory, 2085-2108, 2020
172020
Uniform regret bounds over for the sequential linear regression problem with the square loss
P Gaillard, S Gerchinovitz, M Huard, G Stoltz
Algorithmic Learning Theory, 404-432, 2019
152019
Efficient online learning with kernels for adversarial large scale problems
R Jézéquel, P Gaillard, A Rudi
Advances in Neural Information Processing Systems 32, 2019
152019
Sparse accelerated exponential weights
P Gaillard, O Wintenberger
Artificial Intelligence and Statistics, 75-82, 2017
122017
Contributions à l’agrégation séquentielle robuste d’experts: Travaux sur l’erreur d’approximation et la prévision en loi. Applications à la prévision pour les marchés de l’énergie.
P Gaillard
Paris 11, 2015
112015
Target tracking for contextual bandits: Application to demand side management
M Brégère, P Gaillard, Y Goude, G Stoltz
International Conference on Machine Learning, 754-763, 2019
92019
Efficient online algorithms for fast-rate regret bounds under sparsity
P Gaillard, O Wintenberger
Advances in Neural Information Processing Systems 31, 2018
82018
A continuized view on nesterov acceleration for stochastic gradient descent and randomized gossip
M Even, R Berthier, F Bach, N Flammarion, P Gaillard, H Hendrikx, ...
arXiv preprint arXiv:2106.07644, 2021
72021
Online learning and game theory. a quick overview with recent results and applications
M Faure, P Gaillard, B Gaujal, V Perchet
ESAIM: Proceedings and Surveys 51, 246-271, 2015
72015
The system can't perform the operation now. Try again later.
Articles 1–20