Philipp W. Schroeder
Philipp W. Schroeder
Institute for Numerical and Applied Mathematics, Georg-August-Universität Göttingen
Geverifieerd e-mailadres voor math.uni-goettingen.de
Geciteerd door
Geciteerd door
Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations
PW Schroeder, C Lehrenfeld, A Linke, G Lube
SeMA Journal 75, 629-653, 2018
Divergence-free H (div)-FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics
PW Schroeder, G Lube
Journal of Scientific Computing 75 (2), 830-858, 2017
Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier–Stokes flows
PW Schroeder, G Lube
Journal of Numerical Mathematics 25 (4), 249-276, 2017
On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond
NR Gauger, A Linke, PW Schroeder
The SMAI journal of computational mathematics 5, 89-129, 2019
High‐order DG solvers for underresolved turbulent incompressible flows: A comparison of L2 and H(div) methods
N Fehn, M Kronbichler, C Lehrenfeld, G Lube, PW Schroeder
International Journal for Numerical Methods in Fluids 91 (11), 533-556, 2019
On reference solutions and the sensitivity of the 2D Kelvin–Helmholtz instability problem
PW Schroeder, V John, PL Lederer, C Lehrenfeld, G Lube, J Schöberl
Computers & Mathematics with Applications 77 (4), 1010-1028, 2019
Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes
PW Schroeder, G Lube
Journal of Computational Physics 335, 760-779, 2017
The analogue of grad–div stabilization in DG methods for incompressible flows: Limiting behavior and extension to tensor-product meshes
M Akbas, A Linke, LG Rebholz, PW Schroeder
Computer Methods in Applied Mechanics and Engineering 341, 917-938, 2018
Robustness of high-order divergence-free finite element methods for incompressible computational fluid dynamics
PW Schroeder
Dissertation, Göttingen, Georg-August Universität, 2019, 2019
Implicit LES with high-order H (div)-conforming FEM for incompressible Navier-Stokes flows
G Lube, PW Schroeder
Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018 …, 2020
A natural decomposition of viscous dissipation in DG methods for turbulent incompressible flows
C Lehrenfeld, G Lube, PW Schroeder
arXiv preprint arXiv:1811.12769, 2018
Viscous dissipation in DG methods for turbulent incompressible flows
C Lehrenfeld, G Lube, PW Schroeder
PAMM 19 (1), e201900049, 2019
Institut für Numerische und Angewandte Mathematik
PW Schroeder, C Lehrenfeld, A Linke, G Lube
Semi-Robust Error Estimates of Galerkin-FEM with Exactly Divergence-Free Finite Elements for Incompressible Flows
G Lube, P Schroeder
für Angewandte Analysis und Stochastik
C Kraus
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–15