Large-scale log-determinant computation through stochastic Chebyshev expansions I Han, D Malioutov, J Shin International Conference on Machine Learning, 908-917, 2015 | 91 | 2015 |
Approximating spectral sums of large-scale matrices using stochastic Chebyshev approximations I Han, D Malioutov, H Avron, J Shin SIAM Journal on Scientific Computing 39 (4), A1558-A1585, 2017 | 76 | 2017 |
Faster greedy MAP inference for determinantal point processes I Han, P Kambadur, K Park, J Shin International Conference on Machine Learning, 1384-1393, 2017 | 16 | 2017 |
Stochastic chebyshev gradient descent for spectral optimization I Han, H Avron, J Shin Advances in Neural Information Processing Systems 31, 2018 | 13 | 2018 |
Scalable learning and MAP inference for nonsymmetric determinantal point processes M Gartrell, I Han, E Dohmatob, J Gillenwater, VE Brunel arXiv preprint arXiv:2006.09862, 2020 | 12 | 2020 |
Scaling neural tangent kernels via sketching and random features A Zandieh, I Han, H Avron, N Shoham, C Kim, J Shin Advances in Neural Information Processing Systems 34, 1062-1073, 2021 | 10 | 2021 |
MAP inference for customized determinantal point processes via maximum inner product search I Han, J Gillenwater International Conference on Artificial Intelligence and Statistics, 2797-2807, 2020 | 9 | 2020 |
Polynomial tensor sketch for element-wise function of low-rank matrix I Han, H Avron, J Shin International Conference on Machine Learning, 3984-3993, 2020 | 6 | 2020 |
Random features for the neural tangent kernel I Han, H Avron, N Shoham, C Kim, J Shin arXiv preprint arXiv:2104.01351, 2021 | 4 | 2021 |
Fast neural kernel embeddings for general activations I Han, A Zandieh, J Lee, R Novak, L Xiao, A Karbasi arXiv preprint arXiv:2209.04121, 2022 | 2 | 2022 |
Scalable sampling for nonsymmetric determinantal point processes I Han, M Gartrell, J Gillenwater, E Dohmatob, A Karbasi arXiv preprint arXiv:2201.08417, 2022 | 2 | 2022 |
Stochastic gradient descent SL Team | 2 | 2016 |
Scalable mcmc sampling for nonsymmetric determinantal point processes I Han, M Gartrell, E Dohmatob, A Karbasi International Conference on Machine Learning, 8213-8229, 2022 | 1 | 2022 |
Random gegenbauer features for scalable kernel methods I Han, A Zandieh, H Avron International Conference on Machine Learning, 8330-8358, 2022 | 1 | 2022 |
Optimizing Spectral Sums using Randomized Chebyshev Expansions I Han, H Avron, J Shin arXiv preprint arXiv:1802.06355, 2018, 2018 | 1 | 2018 |
Near Optimal Reconstruction of Spherical Harmonic Expansions A Zandieh, I Han, H Avron arXiv preprint arXiv:2202.12995, 2022 | | 2022 |
{Approximating spectral sums of large-scale matrices: application to determinantal point processes I Han 한국과학기술원, 2017 | | 2017 |