Marco Virgolin
Titel
Geciteerd door
Geciteerd door
Jaar
Scalable genetic programming by gene-pool optimal mixing and input-space entropy-based building-block learning
M Virgolin, T Alderliesten, C Witteveen, PAN Bosman
Proceedings of the Genetic and Evolutionary Computation Conference, 1041-1048, 2017
182017
Symbolic regression and feature construction with GP-GOMEA applied to radiotherapy dose reconstruction of childhood cancer survivors
M Virgolin, T Alderliesten, A Bel, C Witteveen, PAN Bosman
Proceedings of the Genetic and Evolutionary Computation Conference, 1395-1402, 2018
142018
Local search is a remarkably strong baseline for neural architecture search
TD Ottelander, A Dushatskiy, M Virgolin, PAN Bosman
arXiv preprint arXiv:2004.08996, 2020
132020
Linear scaling with and within semantic backpropagation-based genetic programming for symbolic regression
M Virgolin, T Alderliesten, PAN Bosman
Proceedings of the genetic and evolutionary computation conference, 1084-1092, 2019
92019
Improving Model-based Genetic Programming for Symbolic Regression of Small Expressions
M Virgolin, T Alderliesten, C Witteveen, PAN Bosman
arXiv preprint arXiv:1904.02050, 2019
9*2019
On the feasibility of automatically selecting similar patients in highly individualized radiotherapy dose reconstruction for historic data of pediatric cancer survivors
M Virgolin, IWEM Van Dijk, J Wiersma, CM Ronckers, C Witteveen, A Bel, ...
Medical physics 45 (4), 1504-1517, 2018
92018
On Explaining Machine Learning Models by Evolving Crucial and Compact Features
M Virgolin, T Alderliesten, PAN Bosman
arXiv preprint arXiv:1907.02260, 2019
72019
Unveiling evolutionary algorithm representation with DU maps
E Medvet, M Virgolin, M Castelli, PAN Bosman, I Gonçalves, T Tušar
Genetic Programming and Evolvable Machines 19 (3), 351-389, 2018
72018
How do patient characteristics and anatomical features correlate to accuracy of organ dose reconstruction for Wilms’ tumor radiation treatment plans when using a surrogate …
Z Wang, BV Balgobind, M Virgolin, IWEM Van Dijk, J Wiersma, ...
Journal of Radiological Protection 39 (2), 598, 2019
42019
Learning a formula of interpretability to learn interpretable formulas
M Virgolin, A De Lorenzo, E Medvet, F Randone
International Conference on Parallel Problem Solving from Nature, 79-93, 2020
32020
Evolutionary learning of syntax patterns for genic interaction extraction
A Bartoli, A De Lorenzo, E Medvet, F Tarlao, M Virgolin
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary …, 2015
32015
Machine learning for the prediction of pseudorealistic pediatric abdominal phantoms for radiation dose reconstruction
M Virgolin, Z Wang, T Alderliesten, PAN Bosman
Journal of Medical Imaging 7 (4), 046501, 2020
12020
Machine learning for automatic construction of pediatric abdominal phantoms for radiation dose reconstruction
M Virgolin, Z Wang, T Alderliesten, PAN Bosman
Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and …, 2020
12020
Automatic generation of three-dimensional dose reconstruction data for two-dimensional radiotherapy plans for historically treated patients
Z Wang, M Virgolin, PAN Bosman, KF Crama, BV Balgobind, A Bel, ...
Journal of Medical Imaging 7 (1), 015001, 2020
12020
Machine learning for automatic construction of pseudo-realistic pediatric abdominal phantoms
M Virgolin, Z Wang, T Alderliesten, PAN Bosman
arXiv preprint arXiv:1909.03723, 2019
12019
Automatic radiotherapy plan emulation for 3D dose reconstruction to enable big data analysis for historically treated patients
Z Wang, M Virgolin, PAN Bosman, BV Balgobind, A Bel, T Alderliesten
Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and …, 2019
12019
Contemporary Symbolic Regression Methods and their Relative Performance
W La Cava, P Orzechowski, B Burlacu, FO de França, M Virgolin, JIN Ying, ...
2021
Model Learning with Personalized Interpretability Estimation (ML-PIE)
M Virgolin, A De Lorenzo, F Randone, E Medvet, M Wahde
arXiv preprint arXiv:2104.06060, 2021
2021
Genetic Programming is Naturally Suited to Evolve Bagging Ensembles
M Virgolin
arXiv preprint arXiv:2009.06037, 2021
2021
Surrogate-free machine learning-based organ dose reconstruction for pediatric abdominal radiotherapy
M Virgolin, Z Wang, BV Balgobind, IWEM van Dijk, J Wiersma, PS Kroon, ...
Physics in Medicine & Biology 65 (24), 245021, 2020
2020
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20