Follow
Matteo Ciniselli
Title
Cited by
Cited by
Year
An empirical study on the usage of bert models for code completion
M Ciniselli, N Cooper, L Pascarella, D Poshyvanyk, M Di Penta, G Bavota
2021 IEEE/ACM 18th International Conference on Mining Software Repositories …, 2021
462021
An empirical study on the usage of transformer models for code completion
M Ciniselli, N Cooper, L Pascarella, A Mastropaolo, E Aghajani, ...
IEEE Transactions on Software Engineering 48 (12), 4818-4837, 2021
422021
On the robustness of code generation techniques: An empirical study on github copilot
A Mastropaolo, L Pascarella, E Guglielmi, M Ciniselli, S Scalabrino, ...
arXiv preprint arXiv:2302.00438, 2023
252023
To what extent do deep learning-based code recommenders generate predictions by cloning code from the training set?
M Ciniselli, L Pascarella, G Bavota
Proceedings of the 19th International Conference on Mining Software …, 2022
132022
Source Code Recommender Systems: The Practitioners' Perspective
M Ciniselli, L Pascarella, E Aghajani, S Scalabrino, R Oliveto, G Bavota
arXiv preprint arXiv:2302.04098, 2023
12023
Un approccio robusto per il problema dell'assegnamento ottimale dei pazienti agli operatori nei servizi di assistenza domiciliare
M CINISELLI
Italy, 2015
2015
2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR)| 978-1-7281-8710-5/20/$31.00© 2021 IEEE| DOI: 10.1109/MSR52588. 2021.00090
R Abdalkareem, S Afroz, D Aggarwal, E Aghajani, V Agrahari, ...
The system can't perform the operation now. Try again later.
Articles 1–7