Follow
Vít Škvára
Vít Škvára
PhD student, CTU FNSPE
Verified email at fjfi.cvut.cz
Title
Cited by
Cited by
Year
Are generative deep models for novelty detection truly better?
V Škvára, T Pevný, V Šmídl
arXiv preprint arXiv:1807.05027, 2018
332018
Overview of the COMPASS results
M Hron, J Adamek, J Cavalier, R Dejarnac, O Ficker, O Grover, J Horáček, ...
Nuclear Fusion 62 (4), 042021, 2022
62022
Detection of Alfvén eigenmodes on COMPASS with generative neural networks
V Škvára, V Šmídl, T Pevný, J Seidl, A Havránek, D Tskhakaya
Fusion Science and Technology 76 (8), 962-971, 2020
62020
Comparison of anomaly detectors: context matters
V Škvára, J Francĺ, M Zorek, T Pevný, V Šmídl
IEEE Transactions on Neural Networks and Learning Systems 33 (6), 2494-2507, 2021
32021
Robust sparse linear regression for tokamak plasma boundary estimation using variational Bayes
V Škvára, V Šmídl, J Urban
Journal of Physics: Conference Series 1047 (1), 012015, 2018
12018
On-line Model Structure Selection for Estimation of Plasma Boundary in a Tokamak
V Škvára, V Šmídl, J Urban
Journal of Physics: Conference Series 659 (1), 012010, 2015
12015
Semi-supervised deep networks for plasma state identification
M Zorek, V Škvára, V Šmídl, T Pevný, J Seidl, O Grover, Compass Team
Plasma Physics and Controlled Fusion 64 (12), 125004, 2022
2022
On-line Model Structure Selection for Estimation of Plasma Boundary in a Tokamak
Š Vít, Š Václav, U Jakub
Journal of Physics: Conference Series, 12th European Workshop on Advanced …, 0
The system can't perform the operation now. Try again later.
Articles 1–8