Domain uncertainty quantification in computational electromagnetics R Aylwin, C Jerez-Hanckes, C Schwab, J Zech SIAM/ASA Journal on Uncertainty Quantification 8 (1), 301-341, 2020 | 18 | 2020 |
Quantifying the impact of random surface perturbations on reflective gratings G Silva-Oelker, R Aylwin, C Jerez-Hanckes, P Fay IEEE Transactions on Antennas and Propagation 66 (2), 838-847, 2017 | 14 | 2017 |
On the properties of quasi-periodic boundary integral operators for the Helmholtz equation R Aylwin, C Jerez-Hanckes, J Pinto Integral Equations and Operator Theory 92 (2), 1-41, 2020 | 4 | 2020 |
Optimization methods for achieving high diffraction efficiency with perfect electric conducting gratings R Aylwin, G Silva-Oelker, C Jerez-Hanckes, P Fay JOSA A 37 (8), 1316-1326, 2020 | 2 | 2020 |
Fast solver for quasi-periodic 2D-Helmholtz scattering in layered media J Pinto, R Aylwin, C Jerez-Hanckes ESAIM: Mathematical Modelling and Numerical Analysis 55 (5), 2445-2472, 2021 | 1 | 2021 |
The effect of quadrature rules on finite element solutions of Maxwell variational problems R Aylwin, C Jerez-Hanckes Numerische Mathematik 147 (4), 903-936, 2021 | 1 | 2021 |
ReLU neural network Galerkin BEM R Aylwin, F Henriquez, C Schwab SAM Research Report 2022, 2022 | | 2022 |
Finite-Element Domain Approximation for Maxwell Variational Problems on Curved Domains R Aylwin, C Jerez-Hanckes arXiv preprint arXiv:2201.00883, 2022 | | 2022 |
Diffraction efficiency optimization for multilayered parametric holographic gratings J Pinto, R Aylwin, G Silva-Oelker, C Jerez-Hanckes Optics Letters 46 (16), 3929-3932, 2021 | | 2021 |
COMPUTATIONAL UNCERTAINTY QUANTIFICATION FOR ELECTROMAGNETIC WAVE SCATTERING BY RANDOM SURFACES R AYLWIN, C JEREZ-HANCKES, C SCHWAB, J ZECH | | |