Volgen
Sebastian Lunz
Sebastian Lunz
Quantitative Researcher, G-Research
Geen geverifieerd e-mailadres
Titel
Geciteerd door
Geciteerd door
Jaar
Banach wasserstein gan
J Adler, S Lunz
Advances in neural information processing systems 31, 2018
2082018
Adversarial regularizers in inverse problems
S Lunz, O Öktem, CB Schönlieb
Advances in neural information processing systems 31, 2018
2022018
On the connection between adversarial robustness and saliency map interpretability
C Etmann, S Lunz, P Maass, CB Schönlieb
arXiv preprint arXiv:1905.04172, 2019
1282019
Learned convex regularizers for inverse problems
S Mukherjee, S Dittmer, Z Shumaylov, S Lunz, O Öktem, CB Schönlieb
arXiv preprint arXiv:2008.02839, 2020
472020
Inverse graphics gan: Learning to generate 3d shapes from unstructured 2d data
S Lunz, Y Li, A Fitzgibbon, N Kushman
arXiv preprint arXiv:2002.12674, 2020
362020
Task adapted reconstruction for inverse problems
J Adler, S Lunz, O Verdier, CB Schönlieb, O Öktem
Inverse Problems 38 (7), 075006, 2022
342022
On learned operator correction in inverse problems
S Lunz, A Hauptmann, T Tarvainen, CB Schonlieb, S Arridge
SIAM Journal on Imaging Sciences 14 (1), 92-127, 2021
342021
Exploiting prior knowledge about biological macromolecules in cryo-EM structure determination
D Kimanius, G Zickert, T Nakane, J Adler, S Lunz, CB Schönlieb, O Öktem, ...
IUCrJ 8 (1), 60-75, 2021
172021
Machine Learning in Inverse Problems-Learning Regularisation Functionals and Operator Corrections
S Lunz
University of Cambridge, 2022
2022
Learned Regularizers for Inverse Problems
S Lunz
Handbook of Mathematical Models and Algorithms in Computer Vision and …, 2022
2022
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–10