Follow
Domokos Sármány
Title
Cited by
Cited by
Year
Dispersion and dissipation error in high-order Runge-Kutta discontinuous Galerkin discretisations of the Maxwell equations
D Sármány, MA Botchev, JJW van der Vegt
Journal of Scientific Computing 33, 47-74, 2007
692007
Optimal penalty parameters for symmetric discontinuous Galerkin discretisations of the time-harmonic Maxwell equations
D Sármány, F Izsák, JJW van der Vegt
Journal of scientific computing 44, 219-254, 2010
512010
The ECMWF scalability programme: Progress and plans
P Bauer, T Quintino, N Wedi, A Bonanni, M Chrust, W Deconinck, ...
European Centre for Medium Range Weather Forecasts, 2020
242020
Time-integration methods for finite element discretisations of the second-order Maxwell equation
D Sármány, MA Botchev, JJW van der Vegt
Computers & Mathematics with Applications 65 (3), 528-543, 2013
232013
Unconditionally stable space–time discontinuous residual distribution for shallow-water flows
D Sarmany, ME Hubbard, M Ricchiuto
Journal of Computational Physics 253, 86-113, 2013
192013
Upwind residual distribution for shallow-water ocean modelling
D Sármány, ME Hubbard
Ocean Modelling 64, 1-11, 2013
72013
Space–time residual distribution on moving meshes
ME Hubbard, M Ricchiuto, D Sarmany
Computers & Mathematics with Applications 79 (5), 1561-1589, 2020
52020
High-order finite element approximations of the Maxwell equations
D Sármány
42010
Comparing DG and Nedelec finite element discretisations of the second-order time-domain Maxwell equation
D Sarmany, MA Bochev, JJW van der Vegt, JG Verwer
University of Twente, Faculty of Mathematical Sciences, 2009
22009
A Middleware Supporting Data Movement in Complex and Software-Defined Storage and Memory Architectures
C Haine, UU Haus, M Martinasso, D Pleiter, F Tessier, D Sarmany, ...
High Performance Computing: ISC High Performance Digital 2021 International …, 2021
12021
High-order accurate discontinuous Galerkin method for the indefinite time-harmonic Maxwell equations
D Sármány, F Izsák, JJW van der Vegt
University of Twente, Faculty of Mathematical Sciences, 2009
12009
Space-time residual distribution schemes on moving meshes
M Hubbard, M Ricchiuto, D Sarmany
5th Biennial Conference on Numerical Analysis, 2013
2013
High-order Runge-Kutta discontinuous Galerkin method for the Maxwell equations
D Sármány, MA Botchev, JWW van der Vegt
2007
Moving Mesh Algorithms for Time-Dependent Hyperbolic Conservation Laws
ME Hubbard, M Ricchiuto, D Sármány, T CARDAMOM
Comparison of time-stepping methods for nodal high-order discretisation of Maxwell’s equations
D Sármány, MA Botchev, JJW van der Vegt
The system can't perform the operation now. Try again later.
Articles 1–15