Volgen
Scott Lundberg
Scott Lundberg
Google DeepMind
Geverifieerd e-mailadres voor google.com - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
A unified approach to interpreting model predictions
SM Lundberg, SI Lee
Advances in neural information processing systems 30, 2017
175732017
From local explanations to global understanding with explainable AI for trees
SM Lundberg, G Erion, H Chen, A DeGrave, JM Prutkin, B Nair, R Katz, ...
Nature machine intelligence 2 (1), 56-67, 2020
32692020
Consistent individualized feature attribution for tree ensembles
SM Lundberg, GG Erion, SI Lee
arXiv preprint arXiv:1802.03888, 2018
15022018
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
SM Lundberg, B Nair, MS Vavilala, M Horibe, MJ Eisses, T Adams, ...
Nature biomedical engineering 2 (10), 749-760, 2018
11842018
Sparks of artificial general intelligence: Early experiments with gpt-4
S Bubeck, V Chandrasekaran, R Eldan, J Gehrke, E Horvitz, E Kamar, ...
arXiv preprint arXiv:2303.12712, 2023
10112023
Explainable AI for trees: From local explanations to global understanding
SM Lundberg, G Erion, H Chen, A DeGrave, JM Prutkin, B Nair, R Katz, ...
arXiv preprint arXiv:1905.04610, 2019
3092019
A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
SI Lee, S Celik, BA Logsdon, SM Lundberg, TJ Martins, VG Oehler, ...
Nature communications 9 (1), 42, 2018
2662018
Understanding global feature contributions with additive importance measures
I Covert, SM Lundberg, SI Lee
Advances in Neural Information Processing Systems 33, 17212-17223, 2020
2142020
Explaining by removing: A unified framework for model explanation
IC Covert, S Lundberg, SI Lee
The Journal of Machine Learning Research 22 (1), 9477-9566, 2021
1732021
Visualizing the impact of feature attribution baselines
P Sturmfels, S Lundberg, SI Lee
Distill 5 (1), e22, 2020
1652020
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G Erion, JD Janizek, P Sturmfels, SM Lundberg, SI Lee
Nature machine intelligence 3 (7), 620-631, 2021
1512021
An unexpected unity among methods for interpreting model predictions
S Lundberg, SI Lee
arXiv preprint arXiv:1611.07478, 2016
1422016
True to the model or true to the data?
H Chen, JD Janizek, S Lundberg, SI Lee
arXiv preprint arXiv:2006.16234, 2020
1322020
Consistent feature attribution for tree ensembles
SM Lundberg, SI Lee
arXiv preprint arXiv:1706.06060, 2017
1322017
A unified approach to interpreting model predictions. arXiv 2017
S Lundberg, SI Lee
arXiv preprint arXiv:1705.07874, 2022
1172022
Explaining models by propagating Shapley values of local components
H Chen, S Lundberg, SI Lee
Explainable AI in Healthcare and Medicine: Building a Culture of …, 2021
932021
Shapley flow: A graph-based approach to interpreting model predictions
J Wang, J Wiens, S Lundberg
International Conference on Artificial Intelligence and Statistics, 721-729, 2021
892021
Consistent individualized feature attribution for tree ensembles. arXiv 2018
SM Lundberg, GG Erion, SI Lee
arXiv preprint arXiv:1802.03888, 1802
861802
Sparks of artificial general intelligence: early experiments with GPT-4. arXiv
S Bubeck, V Chandrasekaran, R Eldan, J Gehrke, E Horvitz, E Kamar, ...
812023
Learning explainable models using attribution priors
G Erion, JD Janizek, P Sturmfels, SM Lundberg, SI Lee
742019
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20