First-order system least squares on curved boundaries: Higher-order Raviart--Thomas elements F Bertrand, S Munzenmaier, G Starke SIAM Journal on Numerical Analysis 52 (6), 3165-3180, 2014 | 38 | 2014 |

First-order system least squares on curved boundaries: Lowest-order Raviart--Thomas elements F Bertrand, S Munzenmaier, G Starke SIAM Journal on Numerical Analysis 52 (2), 880-894, 2014 | 31 | 2014 |

First order least-squares formulations for eigenvalue problems F Bertrand, D Boffi IMA Journal of Numerical Analysis 42 (2), 1339-1363, 2022 | 19 | 2022 |

Parametric Raviart--Thomas elements for mixed methods on domains with curved surfaces F Bertrand, G Starke SIAM Journal on Numerical Analysis 54 (6), 3648-3667, 2016 | 19 | 2016 |

A posteriori error estimation for planar linear elasticity by stress reconstruction F Bertrand, M Moldenhauer, G Starke Computational Methods in Applied Mathematics 19 (3), 663-679, 2019 | 15 | 2019 |

Least-squares formulations for eigenvalue problems associated with linear elasticity F Bertrand, D Boffi Computers & Mathematics with Applications 95, 19-27, 2021 | 12 | 2021 |

Least-squares finite element method for a meso-scale model of the spread of COVID-19 F Bertrand, E Pirch Computation 9 (2), 18, 2021 | 11 | 2021 |

Recent advances in least-squares and discontinuous Petrov–Galerkin finite element methods F Bertrand, L Demkowicz, J Gopalakrishnan, N Heuer Computational Methods in Applied Mathematics 19 (3), 395-397, 2019 | 11 | 2019 |

Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity F Bertrand, B Kober, M Moldenhauer, G Starke Numerical Methods for Partial Differential Equations 37 (4), 2783-2802, 2021 | 10 | 2021 |

The Prager–Synge theorem in reconstruction based a posteriori error estimation FBD Boffi 75 Years of Mathematics of Computation: Symposium on Celebrating 75 Years of …, 2020 | 10 | 2020 |

Least-squares methods for elasticity and Stokes equations with weakly imposed symmetry F Bertrand, Z Cai, EY Park Computational Methods in Applied Mathematics 19 (3), 415-430, 2019 | 10 | 2019 |

An adaptive finite element scheme for the Hellinger–Reissner elasticity mixed eigenvalue problem F Bertrand, D Boffi, R Ma Computational Methods in Applied Mathematics 21 (3), 501-512, 2021 | 8 | 2021 |

Asymptotically exact a posteriori error analysis for the mixed Laplace eigenvalue problem F Bertrand, D Boffi, R Stenberg Computational Methods in Applied Mathematics 20 (2), 215-225, 2020 | 8 | 2020 |

A posteriori error estimates by weakly symmetric stress reconstruction for the Biot problem F Bertrand, G Starke Computers & Mathematics with Applications 91, 3-16, 2021 | 7 | 2021 |

A posteriori error analysis for the mixed Laplace eigenvalue problem: investigations for the BDM‐element F Bertrand, D Boffi, R Stenberg PAMM 19 (1), e201900155, 2019 | 7 | 2019 |

On the spectrum of an operator associated with least-squares finite elements for linear elasticity L Alzaben, F Bertrand, D Boffi Computational Methods in Applied Mathematics 22 (3), 511-528, 2022 | 6 | 2022 |

Convergence analysis of the scaled boundary finite element method for the Laplace equation F Bertrand, D Boffi, G G. de Diego Advances in computational mathematics 47, 1-17, 2021 | 6 | 2021 |

Weakly symmetric stress equilibration for hyperelastic material models F Bertrand, M Moldenhauer, G Starke GAMM‐Mitteilungen 43 (2), e202000007, 2020 | 6 | 2020 |

On robust discretization methods for poroelastic problems: Numerical examples and counter-examples F Bertrand, M Brodbeck, T Ricken Examples and Counterexamples 2, 100087, 2022 | 5 | 2022 |

On the matching of eigensolutions to parametric partial differential equations MM Alghamdi, F Bertrand, D Boffi, F Bonizzoni, A Halim, G Priyadarshi arXiv preprint arXiv:2207.06145, 2022 | 5 | 2022 |