Follow
Jeff Morgan
Title
Cited by
Cited by
Year
Global existence for semilinear parabolic systems
J Morgan
SIAM journal on mathematical analysis 20 (5), 1128-1144, 1989
1951989
Boundedness and decay results for reaction-diffusion systems
J Morgan
SIAM Journal on Mathematical Analysis 21 (5), 1172-1189, 1990
891990
Stability and Lyapunov functions for reaction-diffusion systems
WB Fitzgibbon, SL Hollis, JJ Morgan
SIAM Journal on Mathematical Analysis 28 (3), 595-610, 1997
661997
A mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous spatial domain
WE Fitzgibbon, M Langlais, JJ Morgan
SIAM journal on mathematical analysis 33 (3), 570-588, 2001
562001
Kinetic modeling of the assembly, dynamic steady state, and contraction of the FtsZ ring in prokaryotic cytokinesis
IV Surovtsev, JJ Morgan, PA Lindahl
PLoS computational biology 4 (7), e1000102, 2008
502008
An outbreak vector-host epidemic model with spatial structure: the 2015–2016 Zika outbreak in Rio De Janeiro
WE Fitzgibbon, JJ Morgan, GF Webb
Theoretical Biology and Medical Modelling 14 (1), 1-17, 2017
492017
A reaction-diffusion system modeling direct and indirect transmission of diseases
WE Fitzgibbon, M Langlais, JJ Morgan
Discrete & Continuous Dynamical Systems-B 4 (4), 893, 2004
422004
A Framework for Whole-Cell Mathematical Modeling
PAL Jeffrey J. Morgan, Ivan V. Surovtsev
Journal of Theoretical Biology 231, 581-596, 2004
34*2004
Global existence and boundedness for a class of inhomogeneous semilinear parabolic systems
WE Fitzgibbon, J Morgan, R Sanders
Nonlinear Analysis: Theory, Methods & Applications 19 (9), 885-899, 1992
341992
Global existence and boundedness for a class of inhomogeneous semilinear parabolic systems
WE Fitzgibbon, J Morgan, R Sanders
Nonlinear Analysis: Theory, Methods & Applications 19 (9), 885-899, 1992
341992
A diffusive epidemic model on a bounded domain of arbitrary dimension
WE Fitzgibbon, JJ Morgan
Differential and Integral Equations 1 (2), 125-132, 1988
331988
Global classical solutions to quadratic systems with mass control in arbitrary dimensions
K Fellner, J Morgan, BQ Tang
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 37 (2), 281-307, 2020
312020
A mathematical model for indirectly transmitted diseases
WE Fitzgibbon, M Langlais, JJ Morgan
Mathematical Biosciences 206 (2), 233-248, 2007
282007
A diffusive epidemic model with criss-cross dynamics
WE Fitzgibbon, CB Martin, JJ Morgan
Journal of mathematical analysis and applications 184 (3), 399-414, 1994
281994
Partly dissipative reaction-diffusion systems and a model of phosphorus diffusion in silicon
SL Hollis, JJ Morgan
Nonlinear Anal. TMA 19, 427-440, 1992
281992
On the blow-up of solutions to some semilinear and quasilinear reaction-diffusion systems
SL Hollis, JJ Morgan
The Rocky Mountain Journal of Mathematics, 1447-1465, 1994
27*1994
Interior estimates for a class of reaction-diffusion systems from L1 a priori estimates
SL Hollis, J Morgan
Journal of differential equations 98 (2), 260-276, 1992
271992
On a question of blow-up for semilinear parabolic systems
J Morgan
Differential and Integral Equations 3 (5), 973-978, 1990
271990
Simple finite element methods for approximating predator–prey dynamics in two dimensions using Matlab
MR Garvie, J Burkardt, J Morgan
Bulletin of mathematical biology 77 (3), 548-578, 2015
252015
Mathematical model of a cell size checkpoint
M Vilela, JJ Morgan, PA Lindahl
PLoS computational biology 6 (12), e1001036, 2010
242010
The system can't perform the operation now. Try again later.
Articles 1–20