Maximilian Nickel
Maximilian Nickel
Research Scientist at Facebook AI Research
Verified email at fb.com - Homepage
Title
Cited by
Cited by
Year
A Three-Way Model for Collective Learning on Multi-Relational Data
M Nickel, V Tresp, HP Kriegel
Proceedings of the 28th International Conference on Machine Learning (ICML …, 2011
11702011
A Review of Relational Machine Learning for Knowledge Graphs
M Nickel, K Murphy, V Tresp, E Gabrilovich
arXiv preprint arXiv:1503.00759, 2015
9632015
Holographic embeddings of knowledge graphs
M Nickel, L Rosasco, T Poggio
Proceedings of the AAAI Conference on Artificial Intelligence 30 (1), 2016
6022016
Poincaré Embeddings for Learning Hierarchical Representations
M Nickel, D Kiela
arXiv preprint arXiv:1705.08039, 2017
4672017
Factorizing YAGO: Scalable Machine Learning for Linked Data
M Nickel, V Tresp, HP Kriegel
Proceedings of the 21st International Conference on World Wide Web, 271-280, 2012
3852012
Learning continuous hierarchies in the lorentz model of hyperbolic geometry
M Nickel, D Kiela
arXiv preprint arXiv:1806.03417, 2018
1302018
Reducing the rank in relational factorization models by including observable patterns
M Nickel, X Jiang, V Tresp
Advances in Neural Information Processing Systems 27, 1179-1187, 2014
832014
Tensor factorization for multi-relational learning
M Nickel, V Tresp
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2013
802013
Hearst patterns revisited: Automatic hypernym detection from large text corpora
S Roller, D Kiela, M Nickel
arXiv preprint arXiv:1806.03191, 2018
602018
Logistic tensor factorization for multi-relational data
M Nickel, V Tresp
arXiv preprint arXiv:1306.2084, 2013
492013
Learning visually grounded sentence representations
D Kiela, A Conneau, A Jabri, M Nickel
arXiv preprint arXiv:1707.06320, 2017
452017
Non-negative tensor factorization with rescal
D Krompaß, M Nickel, X Jiang, V Tresp
Tensor Methods for Machine Learning, ECML workshop, 1-10, 2013
352013
Inferring concept hierarchies from text corpora via hyperbolic embeddings
M Le, S Roller, L Papaxanthos, D Kiela, M Nickel
arXiv preprint arXiv:1902.00913, 2019
342019
Hyperbolic graph neural networks
Q Liu, M Nickel, D Kiela
Advances in Neural Information Processing Systems, 8230-8241, 2019
332019
Link Prediction in Multi-relational Graphs using Additive Models.
X Jiang, V Tresp, Y Huang, M Nickel
SeRSy 919, 1-12, 2012
322012
Querying factorized probabilistic triple databases
D Krompaß, M Nickel, V Tresp
International Semantic Web Conference, 114-129, 2014
302014
A scalable approach for statistical learning in semantic graphs
Y Huang, V Tresp, M Nickel, A Rettinger, HP Kriegel
Semantic Web 5 (1), 5-22, 2014
292014
Complex and holographic embeddings of knowledge graphs: a comparison
T Trouillon, M Nickel
arXiv preprint arXiv:1707.01475, 2017
282017
Fast linear model for knowledge graph embeddings
A Joulin, E Grave, P Bojanowski, M Nickel, T Mikolov
arXiv preprint arXiv:1710.10881, 2017
232017
An analysis of tensor models for learning on structured data
M Nickel, V Tresp
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2013
232013
The system can't perform the operation now. Try again later.
Articles 1–20