Jake Snell
Jake Snell
University of Toronto, Vector Institute
Geverifieerd e-mailadres voor cs.toronto.edu - Homepage
Geciteerd door
Geciteerd door
Prototypical networks for few-shot learning
J Snell, K Swersky, RS Zemel
Advances in Neural Information Processing Systems 30, 4077-4087, 2017
Meta-learning for semi-supervised few-shot classification
M Ren, E Triantafillou, S Ravi, J Snell, K Swersky, JB Tenenbaum, ...
International Conference on Learning Representations, 2018
Learning to generate images with perceptual similarity metrics
J Snell, K Ridgeway, R Liao, BD Roads, MC Mozer, RS Zemel
2017 IEEE International Conference on Image Processing (ICIP), 4277-4281, 2017
Learning latent subspaces in variational autoencoders
J Klys, J Snell, R Zemel
Advances in Neural Information Processing Systems 31, 6444-6454, 2018
Lorentzian distance learning for hyperbolic representations
M Law, R Liao, J Snell, R Zemel
International Conference on Machine Learning, 3672-3681, 2019
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
J Snell, R Zemel
Ninth International Conference on Learning Representations (ICLR 2021), 2021
Dimensionality reduction for representing the knowledge of probabilistic models
MT Law, J Snell, A Farahmand, R Urtasun, RS Zemel
International Conference on Learning Representations, 2018
Flexible Few-Shot Learning with Contextual Similarity
M Ren, E Triantafillou, KC Wang, J Lucas, J Snell, X Pitkow, AS Tolias, ...
arXiv preprint arXiv:2012.05895, 2020
Stochastic Segmentation Trees for Multiple Ground Truths.
J Snell, RS Zemel
UAI, 2017
Learning to Build Probabilistic Models with Limited Data
JC Snell
University of Toronto (Canada), 2021
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–10