Follow
Tijmen Blankevoort
Tijmen Blankevoort
Qualcomm AI Research
Verified email at qti.qualcomm.com
Title
Cited by
Cited by
Year
Data-free quantization through weight equalization and bias correction
M Nagel, M Baalen, T Blankevoort, M Welling
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
3632019
Up or down? adaptive rounding for post-training quantization
M Nagel, RA Amjad, M Van Baalen, C Louizos, T Blankevoort
International Conference on Machine Learning, 7197-7206, 2020
1962020
Relaxed quantization for discretized neural networks
C Louizos, M Reisser, T Blankevoort, E Gavves, M Welling
arXiv preprint arXiv:1810.01875, 2018
1722018
Conditional channel gated networks for task-aware continual learning
D Abati, J Tomczak, T Blankevoort, S Calderara, R Cucchiara, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
1342020
A white paper on neural network quantization
M Nagel, M Fournarakis, RA Amjad, Y Bondarenko, M Van Baalen, ...
arXiv preprint arXiv:2106.08295, 2021
1292021
Lsq+: Improving low-bit quantization through learnable offsets and better initialization
Y Bhalgat, J Lee, M Nagel, T Blankevoort, N Kwak
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
1142020
Bayesian bits: Unifying quantization and pruning
M Van Baalen, C Louizos, M Nagel, RA Amjad, Y Wang, T Blankevoort, ...
Advances in neural information processing systems 33, 5741-5752, 2020
662020
Batch-shaping for learning conditional channel gated networks
BE Bejnordi, T Blankevoort, M Welling
arXiv preprint arXiv:1907.06627, 2019
602019
Differentiable joint pruning and quantization for hardware efficiency
Y Wang, Y Lu, T Blankevoort
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020
482020
Gradient Regularization for Quantization Robustness
M Alizadeh, A Behboodi, M van Baalen, C Louizos, T Blankevoort, ...
arXiv preprint arXiv:2002.07520, 2020
472020
Distilling optimal neural networks: Rapid search in diverse spaces
B Moons, P Noorzad, A Skliar, G Mariani, D Mehta, C Lott, T Blankevoort
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
342021
Understanding and overcoming the challenges of efficient transformer quantization
Y Bondarenko, M Nagel, T Blankevoort
arXiv preprint arXiv:2109.12948, 2021
282021
Learned threshold pruning
K Azarian, Y Bhalgat, J Lee, T Blankevoort
arXiv preprint arXiv:2003.00075, 2020
242020
Taxonomy and evaluation of structured compression of convolutional neural networks
A Kuzmin, M Nagel, S Pitre, S Pendyam, T Blankevoort, M Welling
arXiv preprint arXiv:1912.09802, 2019
192019
A white paper on neural network quantization. arXiv 2021
M Nagel, M Fournarakis, RA Amjad, Y Bondarenko, M van Baalen, ...
arXiv preprint arXiv:2106.08295, 0
14
Overcoming oscillations in quantization-aware training
M Nagel, M Fournarakis, Y Bondarenko, T Blankevoort
International Conference on Machine Learning, 16318-16330, 2022
122022
Continuous relaxation of quantization for discretized deep neural networks
C Louizos, M Reisser, TPF Blankevoort, M Welling
US Patent 11,562,208, 2023
112023
Neural network quantization with ai model efficiency toolkit (aimet)
S Siddegowda, M Fournarakis, M Nagel, T Blankevoort, C Patel, ...
arXiv preprint arXiv:2201.08442, 2022
82022
FP8 Quantization: The Power of the Exponent
A Kuzmin, M Van Baalen, Y Ren, M Nagel, J Peters, T Blankevoort
arXiv preprint arXiv:2208.09225, 2022
72022
Simulated quantization, real power savings
M van Baalen, B Kahne, E Mahurin, A Kuzmin, A Skliar, M Nagel, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
62022
The system can't perform the operation now. Try again later.
Articles 1–20