Bootstrap your own latent-a new approach to self-supervised learning JB Grill, F Strub, F Altché, C Tallec, P Richemond, E Buchatskaya, ... Advances in neural information processing systems 33, 21271-21284, 2020 | 7020 | 2020 |
koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap your own latent-a new approach to self-supervised learning JB Grill, F Strub, F Altché, C Tallec, P Richemond, E Buchatskaya, ... Advances in neural information processing systems 33, 21271-21284, 2020 | 511 | 2020 |
Large-scale representation learning on graphs via bootstrapping S Thakoor, C Tallec, MG Azar, M Azabou, EL Dyer, R Munos, P Veličković, ... arXiv preprint arXiv:2102.06514, 2021 | 248 | 2021 |
Bootstrapped representation learning on graphs S Thakoor, C Tallec, MG Azar, R Munos, P Veličković, M Valko ICLR 2021 Workshop on Geometrical and Topological Representation Learning, 2021 | 245 | 2021 |
Can recurrent neural networks warp time? C Tallec, Y Ollivier arXiv preprint arXiv:1804.11188, 2018 | 179 | 2018 |
Broaden your views for self-supervised video learning A Recasens, P Luc, JB Alayrac, L Wang, F Strub, C Tallec, M Malinowski, ... Proceedings of the IEEE/CVF international conference on computer vision …, 2021 | 142 | 2021 |
Creating artificial human genomes using generative neural networks B Yelmen, A Decelle, L Ongaro, D Marnetto, C Tallec, F Montinaro, ... PLoS genetics 17 (2), e1009303, 2021 | 117 | 2021 |
Byol works even without batch statistics PH Richemond, JB Grill, F Altché, C Tallec, F Strub, A Brock, S Smith, ... arXiv preprint arXiv:2010.10241, 2020 | 107 | 2020 |
Making deep q-learning methods robust to time discretization C Tallec, L Blier, Y Ollivier International Conference on Machine Learning, 6096-6104, 2019 | 104 | 2019 |
Unbiased online recurrent optimization C Tallec, Y Ollivier arXiv preprint arXiv:1702.05043, 2017 | 102 | 2017 |
Unbiasing truncated backpropagation through time C Tallec, Y Ollivier arXiv preprint arXiv:1705.08209, 2017 | 88 | 2017 |
Emergent communication at scale R Chaabouni, F Strub, F Altché, E Tarassov, C Tallec, E Davoodi, ... International conference on learning representations, 2022 | 77 | 2022 |
Byol-explore: Exploration by bootstrapped prediction Z Guo, S Thakoor, M Pîslar, B Avila Pires, F Altché, C Tallec, A Saade, ... Advances in neural information processing systems 35, 31855-31870, 2022 | 68 | 2022 |
Shaking the foundations: delusions in sequence models for interaction and control PA Ortega, M Kunesch, G Delétang, T Genewein, J Grau-Moya, J Veness, ... arXiv preprint arXiv:2110.10819, 2021 | 66 | 2021 |
Training recurrent networks online without backtracking Y Ollivier, C Tallec, G Charpiat arXiv preprint arXiv:1507.07680, 2015 | 56 | 2015 |
Mixed batches and symmetric discriminators for GAN training T Lucas, C Tallec, Y Ollivier, J Verbeek International Conference on Machine Learning, 2844-2853, 2018 | 44 | 2018 |
Learning successor states and goal-dependent values: A mathematical viewpoint L Blier, C Tallec, Y Ollivier arXiv preprint arXiv:2101.07123, 2021 | 32 | 2021 |
Self-conditioned embedding diffusion for text generation R Strudel, C Tallec, F Altché, Y Du, Y Ganin, A Mensch, W Grathwohl, ... arXiv preprint arXiv:2211.04236, 2022 | 26 | 2022 |
Emergent communication: Generalization and overfitting in lewis games M Rita, C Tallec, P Michel, JB Grill, O Pietquin, E Dupoux, F Strub Advances in neural information processing systems 35, 1389-1404, 2022 | 22 | 2022 |
Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments D Jarrett, C Tallec, F Altché, T Mesnard, R Munos, M Valko arXiv preprint arXiv:2211.10515, 2022 | 14 | 2022 |