Vincent Hellendoorn
Vincent Hellendoorn
Geverifieerd e-mailadres voor cmu.edu - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Are deep neural networks the best choice for modeling source code?
VJ Hellendoorn, P Devanbu
Proceedings of the 2017 11th Joint Meeting on Foundations of Software …, 2017
2132017
On the "naturalness" of buggy code
B Ray, V Hellendoorn, S Godhane, Z Tu, A Bacchelli, P Devanbu
Software Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on …, 2016
198*2016
Deep learning type inference
VJ Hellendoorn, C Bird, ET Barr, M Allamanis
Proceedings of the 2018 26th acm joint meeting on european software …, 2018
1012018
Will they like this? Evaluating code contributions with language models
VJ Hellendoorn, PT Devanbu, A Bacchelli
2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, 157-167, 2015
702015
Global Relational Models of Source Code
VJ Hellendoorn, Maniatis, P, R Singh, C Sutton, D Bieber
International Conference on Learning Representations, 2020
552020
Cacheca: A cache language model based code suggestion tool
C Franks, Z Tu, P Devanbu, V Hellendoorn
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering 2 …, 2015
552015
When code completion fails: A case study on real-world completions
VJ Hellendoorn, S Proksch, HC Gall, A Bacchelli
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE …, 2019
292019
Perceived language complexity in GitHub issue discussions and their effect on issue resolution
D Kavaler, S Sirovica, V Hellendoorn, R Aranovich, V Filkov
2017 32nd IEEE/ACM International Conference on Automated Software …, 2017
202017
On the naturalness of proofs
VJ Hellendoorn, PT Devanbu, MA Alipour
Proceedings of the 2018 26th ACM Joint Meeting on European Software …, 2018
92018
Learning lenient parsing & typing via indirect supervision
T Ahmed, P Devanbu, VJ Hellendoorn
Empirical Software Engineering 26 (2), 1-31, 2021
62021
Revisiting test smells in automatically generated tests: limitations, pitfalls, and opportunities
A Panichella, S Panichella, G Fraser, AA Sawant, VJ Hellendoorn
2020 IEEE International Conference on Software Maintenance and Evolution …, 2020
62020
Patching as Translation: the Data and the Metaphor
Y Ding, B Ray, P Devanbu, VJ Hellendoorn
2020 35th IEEE/ACM International Conference on Automated Software …, 2020
32020
Are my invariants valid? a learning approach
VJ Hellendoorn, PT Devanbu, O Polozov, M Marron
arXiv preprint arXiv:1903.06089, 2019
22019
Understanding Neural Code Intelligence Through Program Simplification
M Rafiqul Islam Rabin, VJ Hellendoorn, MA Alipour
arXiv e-prints, arXiv: 2106.03353, 2021
1*2021
Towards automating code review at scale
VJ Hellendoorn, J Tsay, M Mukherjee, M Hirzel
Proceedings of the 29th ACM Joint Meeting on European Software Engineering …, 2021
2021
Memorization and Generalization in Neural Code Intelligence Models
M Rafiqul Islam Rabin, A Hussain, VJ Hellendoorn, MA Alipour
arXiv e-prints, arXiv: 2106.08704, 2021
2021
Learning to Infer Run-Time Invariants from Source code
VJ Hellendoorn, P Devanbu, A Polozov, M Marron
2020
Machine Learning and the Science of Software Engineering
VJ Hellendoorn
University of California, Davis, 2020
2020
Empirical Software Linguistics: An Investigation of Code Reviews, Recommendations and Faults
VJ Hellendoorn
2015
Artifact Evaluation Committee of ICSE 2019
S Abrahão, H Bagheri, D Benavides, K Blincoe, C Casalnuovo, A Filieri, ...
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20