Follow
Amir Zandieh
Amir Zandieh
Max Planck Institute - Informatics
Verified email at mpi-inf.mpg.de - Homepage
Title
Cited by
Cited by
Year
Random Fourier features for kernel ridge regression: Approximation bounds and statistical guarantees
H Avron, M Kapralov, C Musco, C Musco, A Velingker, A Zandieh
International conference on machine learning, 253-262, 2017
1662017
Beyond -approximation for submodular maximization on massive data streams
A Norouzi-Fard, J Tarnawski, S Mitrović, A Zandieh, A Mousavifar, ...
International Conference on Machine Learning, 3829-3838, 2018
952018
Oblivious sketching of high-degree polynomial kernels
TD Ahle, M Kapralov, JBT Knudsen, R Pagh, A Velingker, DP Woodruff, ...
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete …, 2020
912020
A universal sampling method for reconstructing signals with simple fourier transforms
H Avron, M Kapralov, C Musco, C Musco, A Velingker, A Zandieh
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing …, 2019
352019
Kdeformer: Accelerating transformers via kernel density estimation
A Zandieh, I Han, M Daliri, A Karbasi
arXiv preprint arXiv:2302.02451, 2023
292023
Dimension-independent sparse Fourier transform
M Kapralov, A Velingker, A Zandieh
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete …, 2019
262019
Scaling neural tangent kernels via sketching and random features
A Zandieh, I Han, H Avron, N Shoham, C Kim, J Shin
Advances in Neural Information Processing Systems 34, 1062-1073, 2021
242021
Near input sparsity time kernel embeddings via adaptive sampling
D Woodruff, A Zandieh
International Conference on Machine Learning, 10324-10333, 2020
202020
An adaptive sublinear-time block sparse Fourier transform
V Cevher, M Kapralov, J Scarlett, A Zandieh
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing …, 2017
162017
Scaling up kernel ridge regression via locality sensitive hashing
A Zandieh, N Nouri, A Velingker, M Kapralov, I Razenshteyn
International Conference on Artificial Intelligence and Statistics, 4088-4097, 2020
15*2020
Efficiently learning Fourier sparse set functions
A Amrollahi, A Zandieh, M Kapralov, A Krause
Advances in Neural Information Processing Systems 32, 2019
152019
Fast neural kernel embeddings for general activations
I Han, A Zandieh, J Lee, R Novak, L Xiao, A Karbasi
Advances in neural information processing systems 35, 35657-35671, 2022
82022
Leverage score sampling for tensor product matrices in input sparsity time
D Woodruff, A Zandieh
International Conference on Machine Learning, 23933-23964, 2022
72022
Hyperattention: Long-context attention in near-linear time
I Han, R Jarayam, A Karbasi, V Mirrokni, DP Woodruff, A Zandieh
arXiv preprint arXiv:2310.05869, 2023
52023
Random gegenbauer features for scalable kernel methods
I Han, A Zandieh, H Avron
International Conference on Machine Learning, 8330-8358, 2022
22022
Traversing the FFT Computation Tree for Dimension-Independent Sparse Fourier Transforms
K Bringmann, M Kapralov, M Makarov, V Nakos, A Yagudin, A Zandieh
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms …, 2023
12023
Sparse Fourier Transform by traversing Cooley-Tukey FFT computation graphs
K Bringmann, M Kapralov, M Makarov, V Nakos, A Yagudin, A Zandieh
arXiv preprint arXiv:2107.07347, 2021
12021
Near Optimal Reconstruction of Spherical Harmonic Expansions
A Zandieh, I Han, H Avron
arXiv preprint arXiv:2202.12995, 2022
2022
Learning with Neural Tangent Kernels in Near Input Sparsity Time
A Zandieh
arXiv preprint arXiv:2104.00415, 2021
2021
Fourier Sampling in Signal Processing and Numerical Linear Algebra
A Zandieh
EPFL, 2020
2020
The system can't perform the operation now. Try again later.
Articles 1–20