Follow
Louis van Harten
Louis van Harten
Amsterdam UMC, Universiteit van Amsterdam
Verified email at amsterdamumc.nl - Homepage
Title
Cited by
Cited by
Year
Automated assessment of COVID-19 reporting and data system and chest CT severity scores in patients suspected of having COVID-19 using artificial intelligence
N Lessmann, CI Sánchez, L Beenen, LH Boulogne, M Brink, E Calli, ...
Radiology 298 (1), E18-E28, 2021
1152021
Automated assessment of CO-RADS and chest CT severity scores in patients with suspected COVID-19 using artificial intelligence
N Lessmann, CI Sánchez, L Beenen, LH Boulogne, M Brink, E Calli, ...
Radiology, 2020
712020
openPSTD: The open source pseudospectral time-domain method for acoustic propagation
M Hornikx, T Krijnen, L van Harten
Computer Physics Communications 203, 298-308, 2016
422016
Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation
JMH Noothout, N Lessmann, MC Van Eede, LD van Harten, ...
Journal of Medical Imaging 9 (5), 052407-052407, 2022
222022
Untangling and segmenting the small intestine in 3D cine-MRI using deep learning
LD van Harten, CS de Jonge, KJ Beek, J Stoker, I Išgum
Medical image analysis 78, 102386, 2022
192022
Necessity of fault tolerance techniques in Xilinx Kintex 7 FPGA devices for space missions: A case study
L van Harten, R Jordans, H Pourshaghaghi
2017 Euromicro Conference on Digital System Design (DSD), 299-306, 2017
172017
Robust deformable image registration using cycle-consistent implicit representations
LD Van Harten, J Stoker, I Išgum
IEEE Transactions on Medical Imaging, 2023
162023
Automatic Segmentation of Organs at Risk in Thoracic CT scans by Combining 2D and 3D Convolutional Neural Networks
LD van Harten, JMH Noothout, JJC Verhoeff, JM Wolterink, I Išgum
162019
Determining the necessity of fault tolerance techniques in FPGA devices for space missions
LD van Harten, M Mousavi, R Jordans, HR Pourshaghaghi
Microprocessors and Microsystems 63, 1-10, 2018
142018
Deformable Image Registration with Geometry-informed Implicit Neural Representations
L van Harten, RLM Van Herten, J Stoker, I Isgum
Medical Imaging with Deep Learning, 2023
132023
Automatic online quality control of synthetic CTs
LD van Harten, JM Wolterink, JJC Verhoeff, I Išgum
Medical Imaging 2020: Image Processing 11313, 399-405, 2020
102020
PR3: A system For radio-interferometry and radiation measurement on sounding rockets
M Wijtvliet, B Pont, C Brinkerink, HR Pourshaghaghi, R Jordans, ...
Microprocessors and Microsystems 77, 103163, 2020
72020
Untangling the Small Intestine in 3D cine-MRI using Deep Stochastic Tracking
L van Harten, C de Jonge, J Stoker, I Isgum
42021
Quantitative analysis of small intestinal motility in 3D cine‐MRI using centerline‐aware motion estimation
LD van Harten, CS de Jonge, F Struik, J Stoker, I Išgum
Journal of Magnetic Resonance Imaging, 2024
12024
Motion analysis in 4D MRI of the small intestine using neural networks
LD van Harten
2024
REINDIR: Repeated Embedding Infusion for Neural Deformable Image Registration
L van Harten, RLM Van Herten, I Isgum
Medical Imaging with Deep Learning, 2024
2024
Generative Adversarial Networks for Coronary CT Angiography Acquisition Protocol Correction with Explicit Attenuation Constraints
RLM Van Herten, L van Harten, N Planken, I Isgum
Medical Imaging with Deep Learning, 2023
2023
Exploiting clinically available delineations for CNN-based segmentation in radiotherapy treatment planning
LD van Harten, JM Wolterink, JJC Verhoeff, I Išgum
Medical Imaging 2020: Image Processing 11313, 331-337, 2020
2020
The system can't perform the operation now. Try again later.
Articles 1–18