Gated graph sequence neural networks Y Li, D Tarlow, M Brockschmidt, R Zemel arXiv preprint arXiv:1511.05493, 2015 | 4060 | 2015 |
Relational inductive biases, deep learning, and graph networks PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ... arXiv preprint arXiv:1806.01261, 2018 | 3757 | 2018 |
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks W Luo, Y Li, R Urtasun, R Zemel Advances in Neural Information Processing Systems (NIPS), 2016 | 2099 | 2016 |
Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ... arXiv preprint arXiv:2312.11805, 2023 | 1340 | 2023 |
Competition-level code generation with alphacode Y Li, D Choi, J Chung, N Kushman, J Schrittwieser, R Leblond, T Eccles, ... Science 378 (6624), 1092-1097, 2022 | 1058* | 2022 |
Generative moment matching networks Y Li, K Swersky, R Zemel International conference on machine learning, 1718-1727, 2015 | 1030 | 2015 |
Scaling language models: Methods, analysis & insights from training gopher JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ... arXiv preprint arXiv:2112.11446, 2021 | 921 | 2021 |
The variational fair autoencoder C Louizos, K Swersky, Y Li, M Welling, R Zemel arXiv preprint arXiv:1511.00830, 2015 | 727 | 2015 |
Learning deep generative models of graphs Y Li, O Vinyals, C Dyer, R Pascanu, P Battaglia arXiv preprint arXiv:1803.03324, 2018 | 718 | 2018 |
Imagination-Augmented Agents for Deep Reinforcement Learning T Weber, S Racanière, DP Reichert, L Buesing, A Guez, DJ Rezende, ... arXiv:1707.06203, 2017 | 710* | 2017 |
Graph matching networks for learning the similarity of graph structured objects Y Li, C Gu, T Dullien, O Vinyals, P Kohli International conference on machine learning, 3835-3845, 2019 | 639 | 2019 |
Efficient graph generation with graph recurrent attention networks R Liao, Y Li, Y Song, S Wang, W Hamilton, DK Duvenaud, R Urtasun, ... Advances in neural information processing systems 32, 2019 | 353 | 2019 |
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ... arXiv preprint arXiv:2403.05530, 2024 | 290 | 2024 |
Relational deep reinforcement learning V Zambaldi, D Raposo, A Santoro, V Bapst, Y Li, I Babuschkin, K Tuyls, ... arXiv preprint arXiv:1806.01830, 2018 | 284 | 2018 |
Learning the graphical structure of electronic health records with graph convolutional transformer E Choi, Z Xu, Y Li, M Dusenberry, G Flores, E Xue, A Dai Proceedings of the AAAI conference on artificial intelligence 34 (01), 606-613, 2020 | 281* | 2020 |
Solving mixed integer programs using neural networks V Nair, S Bartunov, F Gimeno, I Von Glehn, P Lichocki, I Lobov, ... arXiv preprint arXiv:2012.13349, 2020 | 262 | 2020 |
Eta prediction with graph neural networks in google maps A Derrow-Pinion, J She, D Wong, O Lange, T Hester, L Perez, ... Proceedings of the 30th ACM international conference on information …, 2021 | 252 | 2021 |
Deep reinforcement learning with relational inductive biases V Zambaldi, D Raposo, A Santoro, V Bapst, Y Li, I Babuschkin, K Tuyls, ... International conference on learning representations, 2019 | 232 | 2019 |
Compositional imitation learning: Explaining and executing one task at a time T Kipf, Y Li, H Dai, V Zambaldi, E Grefenstette, P Kohli, P Battaglia arXiv preprint arXiv:1812.01483, 2018 | 145* | 2018 |
Faster sorting algorithms discovered using deep reinforcement learning DJ Mankowitz, A Michi, A Zhernov, M Gelmi, M Selvi, C Paduraru, ... Nature 618 (7964), 257-263, 2023 | 132 | 2023 |