Volgen
Yujia Li
Yujia Li
Andere namen李 宇佳
Research Scientist, Google DeepMind
Geverifieerd e-mailadres voor google.com - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Gated graph sequence neural networks
Y Li, D Tarlow, M Brockschmidt, R Zemel
arXiv preprint arXiv:1511.05493, 2015
40602015
Relational inductive biases, deep learning, and graph networks
PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ...
arXiv preprint arXiv:1806.01261, 2018
37572018
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
W Luo, Y Li, R Urtasun, R Zemel
Advances in Neural Information Processing Systems (NIPS), 2016
20992016
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ...
arXiv preprint arXiv:2312.11805, 2023
13402023
Competition-level code generation with alphacode
Y Li, D Choi, J Chung, N Kushman, J Schrittwieser, R Leblond, T Eccles, ...
Science 378 (6624), 1092-1097, 2022
1058*2022
Generative moment matching networks
Y Li, K Swersky, R Zemel
International conference on machine learning, 1718-1727, 2015
10302015
Scaling language models: Methods, analysis & insights from training gopher
JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ...
arXiv preprint arXiv:2112.11446, 2021
9212021
The variational fair autoencoder
C Louizos, K Swersky, Y Li, M Welling, R Zemel
arXiv preprint arXiv:1511.00830, 2015
7272015
Learning deep generative models of graphs
Y Li, O Vinyals, C Dyer, R Pascanu, P Battaglia
arXiv preprint arXiv:1803.03324, 2018
7182018
Imagination-Augmented Agents for Deep Reinforcement Learning
T Weber, S Racanière, DP Reichert, L Buesing, A Guez, DJ Rezende, ...
arXiv:1707.06203, 2017
710*2017
Graph matching networks for learning the similarity of graph structured objects
Y Li, C Gu, T Dullien, O Vinyals, P Kohli
International conference on machine learning, 3835-3845, 2019
6392019
Efficient graph generation with graph recurrent attention networks
R Liao, Y Li, Y Song, S Wang, W Hamilton, DK Duvenaud, R Urtasun, ...
Advances in neural information processing systems 32, 2019
3532019
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ...
arXiv preprint arXiv:2403.05530, 2024
2902024
Relational deep reinforcement learning
V Zambaldi, D Raposo, A Santoro, V Bapst, Y Li, I Babuschkin, K Tuyls, ...
arXiv preprint arXiv:1806.01830, 2018
2842018
Learning the graphical structure of electronic health records with graph convolutional transformer
E Choi, Z Xu, Y Li, M Dusenberry, G Flores, E Xue, A Dai
Proceedings of the AAAI conference on artificial intelligence 34 (01), 606-613, 2020
281*2020
Solving mixed integer programs using neural networks
V Nair, S Bartunov, F Gimeno, I Von Glehn, P Lichocki, I Lobov, ...
arXiv preprint arXiv:2012.13349, 2020
2622020
Eta prediction with graph neural networks in google maps
A Derrow-Pinion, J She, D Wong, O Lange, T Hester, L Perez, ...
Proceedings of the 30th ACM international conference on information …, 2021
2522021
Deep reinforcement learning with relational inductive biases
V Zambaldi, D Raposo, A Santoro, V Bapst, Y Li, I Babuschkin, K Tuyls, ...
International conference on learning representations, 2019
2322019
Compositional imitation learning: Explaining and executing one task at a time
T Kipf, Y Li, H Dai, V Zambaldi, E Grefenstette, P Kohli, P Battaglia
arXiv preprint arXiv:1812.01483, 2018
145*2018
Faster sorting algorithms discovered using deep reinforcement learning
DJ Mankowitz, A Michi, A Zhernov, M Gelmi, M Selvi, C Paduraru, ...
Nature 618 (7964), 257-263, 2023
1322023
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20