Follow
Celestine Mendler-Dünner
Celestine Mendler-Dünner
ELLIS Institute & Max Planck Institute for Intelligent Systems, Tübingen
Verified email at tuebingen.mpg.de - Homepage
Title
Cited by
Cited by
Year
Performative prediction
JC Perdomo, T Zrnic, C Mendler-Dünner, M Hardt
ICML 2020, 2020
3392020
Stochastic Optimization for Performative Prediction
C Mendler-Dünner, J Perdomo, T Zrnic, M Hardt
NeurIPS 2020 33, 2020
1082020
Scalable and interpretable product recommendations via overlapping co-clustering
R Heckel, M Vlachos, T Parnell, C Mendler-Dünner
ICDE 2017, 1033-1044, 2017
842017
Revisiting Design Choices in Proximal Policy Optimization
C Ching-Yun Hsu, C Mendler-Dünner, M Hardt
RWRL@NeurIPS 2020 - Workshop on Real World Challenges in RL, 2020
75*2020
Primal-dual rates and certificates
C Dünner, S Forte, M Takáč, M Jaggi
ICML 2016, 2016
702016
Alternative Microfoundations for Strategic Classification
M Jagadeesan, C Mendler-Dünner, M Hardt
ICML 2021, 4687-4697, 2021
492021
Performative power
M Hardt, M Jagadeesan, C Mendler-Dünner
NeurIPS 2022 - Advances in Neural Information Processing Systems, 2022
462022
Computer algorithms for three-dimensional measurement of humeral anatomy: analysis of 140 paired humeri
L Vlachopoulos, C Dünner, T Gass, M Graf, O Goksel, C Gerber, ...
JSES 2016 - Journal of shoulder and elbow surgery 25, 2016
392016
Snap ML: A hierarchical framework for machine learning
C Dünner, T Parnell, D Sarigiannis, N Ioannou, A Anghel, G Ravi, ...
NeurIPS 2018 - Advances in Neural Information Processing Systems, 250-260, 2018
38*2018
A Distributed Second-Order Algorithm You Can Trust
C Dünner, A Lucchi, M Gargiani, A Bian, T Hofmann, M Jaggi
ICML 2018 - International Conference on Machine Learning, Stockholm, 2018
352018
Addressing interpretability and cold-start in matrix factorization for recommender systems
M Vlachos*, C Dünner*, R Heckel, VG Vassiliadis, T Parnell, K Atasu
TKDE - IEEE Transactions on Knowledge and Data Engineering 31 (7), 1253-1266, 2018
322018
Regret Minimization with Performative Feedback
M Jagadeesan, T Zrnic, C Mendler-Dünner
ICML 2022 - International Conference on Machine Learning 162, 9760--9785, 2022
302022
Anticipating performativity by predicting from predictions
C Mendler-Dünner, F Ding, Y Wang
Advances in neural information processing systems 35, 31171-31185, 2022
272022
Understanding and Optimizing the Performance of Distributed Machine Learning Applications on Apache Spark
C Dünner, T Parnell, K Atasu, M Sifalakis, H Pozidis
IEEE Big Data 2017 - IEEE International Conference on Big Data, 2017
25*2017
Questioning the survey responses of large language models
R Dominguez-Olmedo, M Hardt, C Mendler-Dünner
arXiv preprint arXiv:2306.07951, 2023
242023
Sampling acquisition functions for batch Bayesian optimization
A De Palma, C Mendler-Dünner, T Parnell, A Anghel, H Pozidis
BNP@NeurIPS 2018 - Workshop on Bayesian Nonparametrics, 2019
222019
Large-Scale Stochastic Learning using GPUs
T Parnell, C Dünner, K Atasu, M Sifalakis, H Pozidis
ParLearning 2017 - Proceedings of the 6th International Workshop on Parallel …, 2017
192017
Algorithmic collective action in machine learning
M Hardt, E Mazumdar, C Mendler-Dünner, T Zrnic
ICML 2023 - International Conference on Machine Learning, 12570-12586, 2023
182023
Linear-Complexity Relaxed Word Mover's Distance with GPU Acceleration
K Atasu, T Parnell, C Dünner, M Sifalakis, H Pozidis, V Vasileiadis, ...
IEEE Big Data 2017 - IEEE International Conference on Big Data, 2017
172017
Efficient Use of Limited-Memory Accelerators for Linear Learning on Heterogeneous Systems
C Dünner, T Parnell, M Jaggi
NIPS 2017 - Advances in Neural Information Processing Systems, 4261-4270, 2017
162017
The system can't perform the operation now. Try again later.
Articles 1–20