Follow
RUIQI GAO
RUIQI GAO
Research Scientist, Google Brain
Verified email at google.com - Homepage
Title
Cited by
Cited by
Year
Imagen Video: High Definition Video Generation with Diffusion Models
J Ho, W Chan, C Saharia, J Whang, R Gao, A Gritsenko, DP Kingma, ...
arXiv preprint arXiv:2210.02303, 2022
1572022
Cooperative training of descriptor and generator networks
J Xie, Y Lu, R Gao, SC Zhu, YN Wu
IEEE transactions on pattern analysis and machine intelligence 42 (1), 27-45, 2018
1322018
Learning Descriptor Networks for 3D Shape Synthesis and Analysis
J Xie, Z Zheng, R Gao, W Wang, SC Zhu, YN Wu
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
1262018
Flow contrastive estimation of energy-based models
R Gao, E Nijkamp, DP Kingma, Z Xu, AM Dai, YN Wu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
812020
Learning generative convnets via multi-grid modeling and sampling
R Gao, Y Lu, J Zhou, SC Zhu, YN Wu
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
772018
Cooperative learning of energy-based model and latent variable model via mcmc teaching
J Xie, Y Lu, R Gao, YN Wu
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
722018
Learning Energy-Based Models by Diffusion Recovery Likelihood
R Gao, Y Song, B Poole, YN Wu, DP Kingma
arXiv preprint arXiv:2012.08125, 2020
642020
Learning dynamic generator model by alternating back-propagation through time
J Xie, R Gao, Z Zheng, SC Zhu, YN Wu
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 5498-5507, 2019
372019
Unsupervised disentangling of appearance and geometry by deformable generator network
X Xing, T Han, R Gao, SC Zhu, YN Wu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
322019
Generative VoxelNet: learning energy-based models for 3D shape synthesis and analysis
J Xie, Z Zheng, R Gao, W Wang, SC Zhu, YN Wu
IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (5), 2468-2484, 2020
312020
On Distillation of Guided Diffusion Models
C Meng, R Gao, DP Kingma, S Ermon, J Ho, T Salimans
arXiv preprint arXiv:2210.03142, 2022
282022
Learning grid cells as vector representation of self-position coupled with matrix representation of self-motion
R Gao, J Xie, SC Zhu, YN Wu
arXiv preprint arXiv:1810.05597, 2018
282018
Deformable generator networks: unsupervised disentanglement of appearance and geometry
X Xing, R Gao, T Han, SC Zhu, YN Wu
IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (3), 1162-1179, 2020
272020
Learning Energy-based Model with Flow-based Backbone by Neural Transport MCMC
E Nijkamp, R Gao, P Sountsov, S Vasudevan, B Pang, SC Zhu, YN Wu
arXiv preprint arXiv:2006.06897, 2020
192020
A Tale of Three Probabilistic Families: Discriminative, Descriptive and Generative Models
YN Wu, R Gao, T Han, SC Zhu
arXiv preprint arXiv:1810.04261, 2018
192018
A remark on copy number variation detection methods
S Li, X Dou, R Gao, X Ge, M Qian, L Wan
PloS one 13 (4), e0196226, 2018
172018
Representation learning: A statistical perspective
J Xie, R Gao, E Nijkamp, SC Zhu, YN Wu
Annual Review of Statistics and Its Application 7, 303-335, 2020
122020
On Path Integration of Grid Cells: Group Representation and Isotropic Scaling
R Gao, J Xie, XX Wei, SC Zhu, YN Wu
Advances in Neural Information Processing Systems 34, 28623-28635, 2021
11*2021
Motion-based generator model: Unsupervised disentanglement of appearance, trackable and intrackable motions in dynamic patterns
J Xie, R Gao, Z Zheng, SC Zhu, YN Wu
Proceedings of the AAAI Conference on Artificial Intelligence 34 (07), 12442 …, 2020
112020
MCMC should mix: learning energy-based model with neural transport latent space MCMC.
E Nijkamp, R Gao, P Sountsov, S Vasudevan, B Pang, SC Zhu, YN Wu
International Conference on Learning Representations (ICLR 2022)., 2022
72022
The system can't perform the operation now. Try again later.
Articles 1–20