The diversity–innovation paradox in science B Hofstra, VV Kulkarni, S Munoz-Najar Galvez, B He, D Jurafsky, ... Proceedings of the National Academy of Sciences 117 (17), 9284-9291, 2020 | 895 | 2020 |
Video-based AI for beat-to-beat assessment of cardiac function D Ouyang, B He, A Ghorbani, N Yuan, J Ebinger, CP Langlotz, ... Nature 580 (7802), 252-256, 2020 | 714* | 2020 |
Deep learning interpretation of echocardiograms A Ghorbani, D Ouyang, A Abid, B He, JH Chen, RA Harrington, DH Liang, ... npg Digital Medicine 3, 2020 | 383 | 2020 |
Integrating spatial gene expression and breast tumour morphology via deep learning B He, L Bergenstrĺhle, L Stenbeck, A Abid, A Andersson, Ĺ Borg, ... Nature biomedical engineering 4 (8), 827-834, 2020 | 308 | 2020 |
Learning the structure of generative models without labeled data SH Bach, B He, A Ratner, C Ré International Conference on Machine Learning, 2017 | 192 | 2017 |
Super-resolved spatial transcriptomics by deep data fusion L Bergenstrĺhle, B He, J Bergenstrĺhle, X Abalo, R Mirzazadeh, K Thrane, ... Nature biotechnology 40 (4), 476-479, 2021 | 120 | 2021 |
High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning G Duffy, PP Cheng, N Yuan, B He, AC Kwan, MJ Shun-Shin, ... JAMA cardiology 7 (4), 386-395, 2022 | 107 | 2022 |
Blinded, randomized trial of sonographer versus AI cardiac function assessment B He, AC Kwan, JH Cho, N Yuan, C Pollick, T Shiota, J Ebinger, NA Bello, ... Nature 616 (7957), 520-524, 2023 | 102 | 2023 |
Accelerated stochastic power iteration P Xu, B He, C De Sa, I Mitliagkas, C Re International Conference on Artificial Intelligence and Statistics, 58-67, 2018 | 94 | 2018 |
Inferring generative model structure with static analysis P Varma, BD He, P Bajaj, N Khandwala, I Banerjee, D Rubin, C Ré Advances in Neural Information Processing Systems 30, 2017 | 64 | 2017 |
Deep learning evaluation of biomarkers from echocardiogram videos JW Hughes, N Yuan, B He, J Ouyang, J Ebinger, P Botting, J Lee, ... EBioMedicine 73, 2021 | 47 | 2021 |
Scan order in Gibbs sampling: Models in which it matters and bounds on how much BD He, CM De Sa, I Mitliagkas, C Ré Advances in Neural Information Processing Systems 29, 2016 | 43 | 2016 |
How to evaluate deep learning for cancer diagnostics–factors and recommendations R Daneshjou, B He, D Ouyang, JY Zou Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1875 (2), 2021 | 37 | 2021 |
Socratic learning: Augmenting generative models to incorporate latent subsets in training data P Varma, B He, D Iter, P Xu, R Yu, C De Sa, C Ré arXiv preprint arXiv:1610.08123, 2016 | 37* | 2016 |
Video-based deep learning for automated assessment of left ventricular ejection fraction in pediatric patients CD Reddy, L Lopez, D Ouyang, JY Zou, B He Journal of the American Society of Echocardiography 36 (5), 482-489, 2023 | 24 | 2023 |
Confounders mediate AI prediction of demographics in medical imaging G Duffy, SL Clarke, M Christensen, B He, N Yuan, S Cheng, D Ouyang NPJ digital medicine 5 (1), 188, 2022 | 24 | 2022 |
Dynamic analysis of naive adaptive brain-machine interfaces KC Kowalski, BD He, L Srinivasan Neural Computation 25 (9), 2373-2420, 2013 | 23 | 2013 |
A simple optimal binary representation of mosaic floorplans and Baxter permutations BD He Theoretical Computer Science 532, 40-50, 2014 | 20* | 2014 |
Systematic quantification of sources of variation in ejection fraction calculation using deep learning N Yuan, I Jain, N Rattehalli, B He, C Pollick, D Liang, P Heidenreich, ... Cardiovascular Imaging 14 (11), 2260-2262, 2021 | 19 | 2021 |
AI-enabled in silico immunohistochemical characterization for Alzheimer's disease B He, S Bukhari, E Fox, A Abid, J Shen, C Kawas, M Corrada, T Montine, ... Cell reports methods 2 (4), 2022 | 15 | 2022 |