Invariant manifolds for flows in Banach spaces K Lu Michigan State Univ., East Lansing, MI (United States), 1989 | 346 | 1989 |

Random attractors for stochastic reaction–diffusion equations on unbounded domains PW Bates, K Lu, B Wang Journal of Differential Equations 246 (2), 845-869, 2009 | 322 | 2009 |

Attractors for stochastic lattice dynamical systems PW Bates, H Lisei, K Lu Stochastics and Dynamics 6 (01), 1-21, 2006 | 265 | 2006 |

Invariant manifolds for stochastic partial differential equations J Duan, K Lu, B Schmalfuss Annals of Probability 31 (4), 2109-2135, 2003 | 259 | 2003 |

Attractors for lattice dynamical systems PW Bates, K Lu, B Wang International Journal of Bifurcation and Chaos 11 (01), 143-153, 2001 | 239 | 2001 |

Existence and persistence of invariant manifolds for semiflows in Banach space PW Bates, K Lu, C Zeng American Mathematical Soc., 1998 | 171 | 1998 |

Estimates of the upper critical field for the Ginzburg–Landau equations of superconductivity K Lu, XB Pan Physica D: Nonlinear Phenomena 127 (1-2), 73-104, 1999 | 148 | 1999 |

Smooth invariant foliations in infinite dimensional spaces SN Chow, XB Lin, K Lu | 137 | 1990 |

Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space Z Lian, K Lu American Mathematical Soc., 2010 | 134 | 2010 |

Smooth stable and unstable manifolds for stochastic evolutionary equations J Duan, K Lu, B Schmalfuss Journal of Dynamics and Differential Equations 16 (4), 949-972, 2004 | 133 | 2004 |

Eigenvalue problems of Ginzburg–Landau operator in bounded domains K Lu, XB Pan Journal of mathematical Physics 40 (6), 2647-2670, 1999 | 130 | 1999 |

Surface nucleation of superconductivity in 3-dimensions K Lu, XB Pan Journal of Differential Equations 168 (2), 386-452, 2000 | 129 | 2000 |

Smoothness of inertial manifolds SN Chow, K Lu, GR Sell | 107 | 1990 |

Gauge Invariant Eigenvalue Problems in ℝⁿ and in ℝⁿ₊ K Lu, XB Pan Transactions of the American Mathematical Society 352 (3), 1247-1276, 2000 | 105 | 2000 |

Attractors for stochastic lattice dynamical systems with a multiplicative noise T Caraballo, K Lu Frontiers of Mathematics in China 3 (3), 317-335, 2008 | 92 | 2008 |

Invariant foliations near normally hyperbolic invariant manifolds for semiflows P Bates, K Lu, C Zeng Transactions of the American Mathematical Society 352 (10), 4641-4676, 2000 | 88 | 2000 |

Existence and persistence of invariant manifolds for semiflows in Banach space, 1998 PW Bates, K Lu, C Zeng Memoirs of the American Mathematical Society 136 (651), 645-645, 1998 | 79 | 1998 |

Approximately invariant manifolds and global dynamics of spike states PW Bates, K Lu, C Zeng Inventiones mathematicae 174 (2), 355-433, 2008 | 77 | 2008 |

Global attractors for the Klein–Gordon–Schrödinger equation in unbounded domains K Lu, B Wang Journal of Differential Equations 170 (2), 281-316, 2001 | 74 | 2001 |

Invariant manifolds for stochastic wave equations K Lu, B Schmalfuß Journal of Differential Equations 236 (2), 460-492, 2007 | 70 | 2007 |