Grandmaster level in StarCraft II using multi-agent reinforcement learning O Vinyals*, I Babuschkin*, WM Czarnecki*, M Mathieu*, A Dudzik*, ... Nature 575, 350–354, 2019 | 3542* | 2019 |
Reinforcement learning with unsupervised auxiliary tasks M Jaderberg*, V Mnih*, WM Czarnecki*, T Schaul, JZ Leibo, D Silver, ... ICLR 2017, 2017 | 1202 | 2017 |
Value-decomposition networks for cooperative multi-agent learning P Sunehag, G Lever, A Gruslys, WM Czarnecki, V Zambaldi, M Jaderberg, ... AAMAS 2018, 2017 | 1099 | 2017 |
Human-level performance in 3D multiplayer games with population-based reinforcement learning M Jaderberg*, WM Czarnecki*, I Dunning*, L Marris, G Lever, ... Science 364 (6443), 859-865, 2019 | 745 | 2019 |
On loss functions for deep neural networks in classification K Janocha, WM Czarnecki TFML 2017, 2017 | 735 | 2017 |
Population based training of neural networks M Jaderberg, V Dalibard, S Osindero, WM Czarnecki, J Donahue, ... arXiv preprint arXiv:1711.09846, 2017 | 708 | 2017 |
Progress & Compress: A scalable framework for continual learning J Schwarz, J Luketina, WM Czarnecki, A Grabska-Barwinska, YW Teh, ... ICML 2018, 2018 | 636 | 2018 |
Distral: Robust Multitask Reinforcement Learning YW Teh, V Bapst, WM Czarnecki, J Quan, J Kirkpatrick, R Hadsell, ... NIPS 2017, 2017 | 511 | 2017 |
Decoupled neural interfaces using synthetic gradients M Jaderberg, WM Czarnecki, S Osindero, O Vinyals, A Graves, ... ICML 2017, 2017 | 335 | 2017 |
Grounded language learning in a simulated 3d world KM Hermann, F Hill, S Green, F Wang, R Faulkner, H Soyer, D Szepesvari, ... CoRR, abs/1706.06551, 2017 | 286* | 2017 |
Multi-task deep reinforcement learning with popart M Hessel, H Soyer, L Espeholt, W Czarnecki, S Schmitt, H van Hasselt AAAI 2019, 2018 | 237 | 2018 |
Sobolev Training for Neural Networks WM Czarnecki, S Osindero, M Jaderberg, G Świrszcz, R Pascanu NIPS 2017, 2017 | 193 | 2017 |
Open-ended Learning in Symmetric Zero-sum Games D Balduzzi, M Garnelo, Y Bachrach, WM Czarnecki, J Perolat, ... ICML 2019, 2019 | 125 | 2019 |
Kickstarting Deep Reinforcement Learning S Schmitt, JJ Hudson, A Zidek, S Osindero, C Doersch, WM Czarnecki, ... NIPS 2018 DL Workshop, 2018 | 109 | 2018 |
Adapting auxiliary losses using gradient similarity Y Du, WM Czarnecki, SM Jayakumar, R Pascanu, B Lakshminarayanan NeurIPS 2018 MetaLearning Workshop, 2018 | 108 | 2018 |
α-Rank: Multi-Agent Evaluation by Evolution S Omidshafiei, C Papadimitriou, G Piliouras, K Tuyls, M Rowland, ... Nature Scientific Reports, 2019 | 107 | 2019 |
Discovering Reinforcement Learning Algorithms J Oh, M Hessel, WM Czarnecki, Z Xu, H van Hasselt, S Singh, D Silver NeurIPS 2020, 2020 | 96 | 2020 |
Local minima in training of neural networks G Swirszcz, WM Czarnecki, R Pascanu arXiv preprint arXiv:1611.06310, 2016 | 96* | 2016 |
Open-Ended Learning Leads to Generally Capable Agents OEL Team, A Stooke, A Mahajan, C Barros, C Deck, J Bauer, J Sygnowski, ... arXiv preprint arXiv:2107.12808, 2021 | 94 | 2021 |
Learning to SMILE (s) S Jastrzebski, D Lesniak, WM Czarnecki ICLR 2016 Workshop track, 2016 | 90* | 2016 |