Mitko Veta
Cited by
Cited by
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
BE Bejnordi, M Veta, PJ Van Diest, B Van Ginneken, N Karssemeijer, ...
Jama 318 (22), 2199-2210, 2017
Breast cancer histopathology image analysis: A review
M Veta, JPW Pluim, PJ Van Diest, MA Viergever
IEEE Transactions on Biomedical Engineering 61 (5), 1400-1411, 2014
Assessment of algorithms for mitosis detection in breast cancer histopathology images
M Veta, PJ Van Diest, SM Willems, H Wang, A Madabhushi, A Cruz-Roa, ...
Medical image analysis 20 (1), 237-248, 2015
Automatic nuclei segmentation in H&E stained breast cancer histopathology images
M Veta, PJ Van Diest, R Kornegoor, A Huisman, MA Viergever, ...
PloS one 8 (7), e70221, 2013
Going fully digital: Perspective of a Dutch academic pathology lab
N Stathonikos, M Veta, A Huisman, PJ van Diest
Journal of Pathology Informatics, 2013
Adversarial training and dilated convolutions for brain MRI segmentation
P Moeskops, M Veta, MW Lafarge, KAJ Eppenhof, JPW Pluim
Deep learning in medical image analysis and multimodal learning for clinical …, 2017
Marker-controlled watershed segmentation of nuclei in H&E stained breast cancer biopsy images
M Veta, A Huisman, MA Viergever, PJ van Diest, JPW Pluim
2011 IEEE international symposium on biomedical imaging: from nano to macro …, 2011
Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge
M Veta, YJ Heng, N Stathonikos, BE Bejnordi, F Beca, T Wollmann, ...
Medical image analysis 54, 111-121, 2019
Domain-adversarial neural networks to address the appearance variability of histopathology images
MW Lafarge, JPW Pluim, KAJ Eppenhof, P Moeskops, M Veta
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical …, 2017
Roto-translation covariant convolutional networks for medical image analysis
EJ Bekkers, MW Lafarge, M Veta, KAJ Eppenhof, JPW Pluim, R Duits
International Conference on Medical Image Computing and Computer-Assisted …, 2018
Prognostic value of automatically extracted nuclear morphometric features in whole slide images of male breast cancer
M Veta, R Kornegoor, A Huisman, AHJ Verschuur-Maes, MA Viergever, ...
Modern pathology 25 (12), 1559-1565, 2012
Mitosis counting in breast cancer: Object-level interobserver agreement and comparison to an automatic method
M Veta, PJ Van Diest, M Jiwa, S Al-Janabi, JPW Pluim
PloS one 11 (8), e0161286, 2016
Deformable image registration using convolutional neural networks
KAJ Eppenhof, MW Lafarge, P Moeskops, M Veta, JPW Pluim
Medical Imaging 2018: Image Processing 10574, 105740S, 2018
Detecting mitotic figures in breast cancer histopathology images
M Veta, PJ van Diest, JPW Pluim
Medical Imaging 2013: Digital Pathology 8676, 867607, 2013
Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation
M Veta, PJ Van Diest, JPW Pluim
International Conference on Medical Image Computing and Computer-Assisted …, 2016
Deep‐Learning‐Based Preprocessing for Quantitative Myocardial Perfusion MRI
CM Scannell, M Veta, ADM Villa, EC Sammut, J Lee, M Breeuwer, ...
Journal of Magnetic Resonance Imaging 51 (6), 1689-1696, 2020
Deep learning with convolutional neural networks for histopathology image analysis
D Bošnački, N van Riel, M Veta
Automated Reasoning for Systems Biology and Medicine, 453-469, 2019
Fast contour propagation for MR‐guided prostate radiotherapy using convolutional neural networks
KAJ Eppenhof, M Maspero, MHF Savenije, JCJ de Boer, ...
Medical Physics 47 (3), 1238-1248, 2020
Long-term prognosis of young breast cancer patients (≤ 40 years) who did not receive adjuvant systemic treatment: protocol for the PARADIGM initiative cohort study
GMHE Dackus, ND Ter Hoeve, M Opdam, W Vreuls, Z Varga, E Koop, ...
BMJ open 7 (11), 2017
Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-parametric MRI
C De Vente, P Vos, M Hosseinzadeh, J Pluim, M Veta
IEEE Transactions on Biomedical Engineering, 2020
The system can't perform the operation now. Try again later.
Articles 1–20