Volgen
Valeriia Cherepanova
Valeriia Cherepanova
Geverifieerd e-mailadres voor amazon.com - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
LowKey: leveraging adversarial attacks to protect social media users from facial recognition
V Cherepanova, M Goldblum, H Foley, S Duan, J Dickerson, G Taylor, ...
International Conference on Learning Representations, 2021
1532021
Strong data augmentation sanitizes poisoning and backdoor attacks without an accuracy tradeoff
E Borgnia, V Cherepanova, L Fowl, A Ghiasi, J Geiping, M Goldblum, ...
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and …, 2021
1442021
Deep learning of HIV field-based rapid tests
V Turbé, C Herbst, T Mngomezulu, S Meshkinfamfard, N Dlamini, ...
Nature medicine 27 (7), 1165-1170, 2021
902021
Unraveling meta-learning: Understanding feature representations for few-shot tasks
M Goldblum, S Reich, L Fowl, R Ni, V Cherepanova, T Goldstein
International Conference on Machine Learning, 3607-3616, 2020
872020
Transfer learning with deep tabular models
R Levin, V Cherepanova, A Schwarzschild, A Bansal, CB Bruss, ...
International Conference on Learning Representations 2023, 2023
77*2023
Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients
O Blyuss, A Zaikin, V Cherepanova, D Munblit, EM Kiseleva, ...
British journal of cancer 122 (5), 692-696, 2020
602020
Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
A Hans, A Schwarzschild, V Cherepanova, H Kazemi, A Saha, ...
International Conference on Machine Learning, 2024
55*2024
Dp-instahide: Provably defusing poisoning and backdoor attacks with differentially private data augmentations
E Borgnia, J Geiping, V Cherepanova, L Fowl, A Gupta, A Ghiasi, ...
ICLR 2021 Workshop on Security and Safety in Machine Learning Systems, 2021
542021
Technical challenges for training fair neural networks
V Cherepanova, V Nanda, M Goldblum, JP Dickerson, T Goldstein
ICLR workshop on Responsible AI, 2021
232021
A deep dive into dataset imbalance and bias in face identification
V Cherepanova, S Reich, S Dooley, H Souri, J Dickerson, M Goldblum, ...
Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, 229-247, 2023
192023
Comparing human and machine bias in face recognition
S Dooley, R Downing, G Wei, N Shankar, B Thymes, G Thorkelsdottir, ...
arXiv preprint arXiv:2110.08396, 2021
182021
A performance-driven benchmark for feature selection in tabular deep learning
V Cherepanova, R Levin, G Somepalli, J Geiping, CB Bruss, AG Wilson, ...
Advances in Neural Information Processing Systems 36, 41956-41979, 2023
132023
TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks
B Feuer, RT Schirrmeister, V Cherepanova, C Hegde, F Hutter, ...
arXiv preprint arXiv:2402.11137, 2024
112024
MetaBalance: high-performance neural networks for class-imbalanced data
A Bansal, M Goldblum, V Cherepanova, A Schwarzschild, CB Bruss, ...
arXiv preprint arXiv:2106.09643, 2021
102021
Talking Nonsense: Probing Large Language Models' Understanding of Adversarial Gibberish Inputs
V Cherepanova, J Zou
ICML 2024 Workshop on the Next Generation of AI Safety, 2024
72024
Improving LLM Group Fairness on Tabular Data via In-Context Learning
V Cherepanova, CJ Lee, NJ Akpinar, R Fogliato, MA Bertran, M Kearns, ...
arXiv preprint arXiv:2412.04642, 2024
12024
Adversarial Robustness and Fairness in Deep Learning
V Cherepanova
University of Maryland, College Park, 2023
2023
Has My System Prompt Been Used? Large Language Model Prompt Membership Inference
R Levin, V Cherepanova, A Hans, A Schwarzschild, T Goldstein
Neurips Safe Generative AI Workshop 2024, 0
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–18