Shakir Mohamed
Shakir Mohamed
Senior Staff Scientist, DeepMind
Geverifieerd e-mailadres voor - Homepage
Geciteerd door
Geciteerd door
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
DJ Rezende, S Mohamed, D Wierstra
The 31st International Conference on Machine Learning (ICML), 2014
Semi-supervised learning with deep generative models
DP Kingma, S Mohamed, DJ Rezende, M Welling
Advances in neural information processing systems, 3581-3589, 2014
beta-vae: Learning basic visual concepts with a constrained variational framework
I Higgins, L Matthey, A Pal, C Burgess, X Glorot, M Botvinick, S Mohamed, ...
Variational inference with normalizing flows
D Rezende, S Mohamed
International conference on machine learning, 1530-1538, 2015
A clinically applicable approach to continuous prediction of future acute kidney injury
N Tomašev, X Glorot, JW Rae, M Zielinski, H Askham, A Saraiva, ...
Nature 572 (7767), 116-119, 2019
Unsupervised learning of 3d structure from images
D Jimenez Rezende, SM Eslami, S Mohamed, P Battaglia, M Jaderberg, ...
Advances in neural information processing systems 29, 4996-5004, 2016
Variational information maximisation for intrinsically motivated reinforcement learning
S Mohamed, DJ Rezende
arXiv preprint arXiv:1509.08731, 2015
Learning in implicit generative models
S Mohamed, B Lakshminarayanan
arXiv preprint arXiv:1610.03483, 2016
Normalizing flows for probabilistic modeling and inference
G Papamakarios, E Nalisnick, DJ Rezende, S Mohamed, ...
arXiv preprint arXiv:1912.02762, 2019
One-shot generalization in deep generative models
D Rezende, S Mohamed, I Danihelka, K Gregor, D Wierstra
International Conference on Machine Learning, 1521-1529, 2016
The cramer distance as a solution to biased wasserstein gradients
MG Bellemare, I Danihelka, W Dabney, S Mohamed, ...
arXiv preprint arXiv:1705.10743, 2017
Variational approaches for auto-encoding generative adversarial networks
M Rosca, B Lakshminarayanan, D Warde-Farley, S Mohamed
arXiv preprint arXiv:1706.04987, 2017
Missing data: A comparison of neural network and expectation maximization techniques
FV Nelwamondo, S Mohamed, T Marwala
Current Science, 1514-1521, 2007
Recurrent environment simulators
S Chiappa, S Racaniere, D Wierstra, S Mohamed
arXiv preprint arXiv:1704.02254, 2017
Many paths to equilibrium: GANs do not need to decrease a divergence at every step
W Fedus, M Rosca, B Lakshminarayanan, AM Dai, S Mohamed, ...
arXiv preprint arXiv:1710.08446, 2017
Implicit reparameterization gradients
M Figurnov, S Mohamed, A Mnih
arXiv preprint arXiv:1805.08498, 2018
Early visual concept learning with unsupervised deep learning
I Higgins, L Matthey, X Glorot, A Pal, B Uria, C Blundell, S Mohamed, ...
arXiv preprint arXiv:1606.05579, 2016
Monte Carlo Gradient Estimation in Machine Learning.
S Mohamed, M Rosca, M Figurnov, A Mnih
J. Mach. Learn. Res. 21 (132), 1-62, 2020
Unsupervised predictive memory in a goal-directed agent
G Wayne, CC Hung, D Amos, M Mirza, A Ahuja, A Grabska-Barwinska, ...
arXiv preprint arXiv:1803.10760, 2018
Bayesian exponential family PCA
S Mohamed, K Heller, Z Ghahramani
Neural Information Processing Systems, 2008
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20