Volgen
Gaurav Kumar Nayak
Gaurav Kumar Nayak
Assistant Professor, IIT Roorkee
Geverifieerd e-mailadres voor mfs.iitr.ac.in - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Zero-Shot Knowledge Distillation in Deep Networks
GK Nayak, KR Mopuri, V Shaj, RV Babu, A Chakraborty
International Conference on Machine Learning (ICML), 4743-4751, 2019
2702019
Degan: Data-enriching gan for retrieving representative samples from a trained classifier
S Addepalli, GK Nayak, A Chakraborty, VB Radhakrishnan
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 3130-3137, 2020
432020
Classification of normal versus malignant cells in B-ALL white blood cancer microscopic images
A Honnalgere, G Nayak
ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging: Select …, 2019
342019
Geoclip: Clip-inspired alignment between locations and images for effective worldwide geo-localization
V Vivanco Cepeda, GK Nayak, M Shah
Advances in Neural Information Processing Systems 36, 2023
302023
Effectiveness of arbitrary transfer sets for data-free knowledge distillation
GK Nayak, KR Mopuri, A Chakraborty
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2021
222021
Development and comparative analysis of fuzzy inference systems for predicting customer buying behavior
GK Nayak, SJ Narayanan, I Paramasivam
International Journal of Engineering and Technology 5 (5), 4093-4108, 2013
222013
Depth analysis on DoS & DDoS attacks
G Nayak, A Mishra, U Samal, BK Mishra
Wireless Communication Security, 159-182, 2022
122022
Dad: Data-free adversarial defense at test time
GK Nayak, R Rawal, A Chakraborty
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2022
122022
Mining Data Impressions From Deep Models as Substitute for the Unavailable Training Data
GK Nayak, KR Mopuri, S Jain, A Chakraborty
IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (11), 8465 …, 2021
112021
Federated Learning on Heterogeneous Data via Adaptive Self-Distillation.
M Yashwanth, G Nayak, A Singh, Y Singh, A Chakraborty
arXiv preprint arXiv:2305.19600, 2023
32023
DE-CROP: Data-efficient certified robustness for pretrained classifiers
GK Nayak, R Rawal, A Chakraborty
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2023
32023
Holistic approach to measure sample-level adversarial vulnerability and its utility in building trustworthy systems
GK Nayak, R Rawal, R Lal, H Patil, A Chakraborty
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022
32022
Fusion of Deep and Non-Deep Methods for Fast Super-Resolution of Satellite Images
GK Nayak, S Jain, RV Babu, A Chakraborty
2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), 267-271, 2020
32020
Data-free Defense of Black Box Models Against Adversarial Attacks
GK Nayak, I Khatri, R Rawal, A Chakraborty
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
22024
Query Efficient Cross-Dataset Transferable Black-Box Attack on Action Recognition
R Gupta, N Akhtar, GK Nayak, A Mian, M Shah
arXiv preprint arXiv:2211.13171, 2022
22022
Beyond Classification: Knowledge Distillation using Multi-Object Impressions
GK Nayak, M Keswani, S Seshadri, A Chakraborty
The British Machine Vision Conference (BMVC), 2021
22021
Efficient person re-identification in videos using sequence lazy greedy determinantal point process (slgdpp)
GK Nayak, U Shreemali, RV Babu, A Chakraborty
2019 IEEE International Conference on Image Processing (ICIP), 4569-4573, 2019
22019
Generalized deep learning model for photovoltaic module segmentation from satellite and aerial imagery
G García, A Aparcedo, GK Nayak, T Ahmed, M Shah, M Li
Solar Energy 274, 112539, 2024
12024
Robust Few-Shot Learning Without Using Any Adversarial Samples
GK Nayak, R Rawal, I Khatri, A Chakraborty
IEEE Transactions on Neural Networks and Learning Systems, 2024
12024
Robust image geolocalization
A Arularasu, PP Kulkarni, GK Nayak, M Shah
Technical report, 2023. 8, 2023
12023
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20