Follow
Lewis Smith
Lewis Smith
Verified email at kellogg.ox.ac.uk - Homepage
Title
Cited by
Cited by
Year
Understanding measures of uncertainty for adversarial example detection
L Smith, Y Gal
arXiv preprint arXiv:1803.08533, 2018
2732018
Uncertainty estimation using a single deep deterministic neural network
J Van Amersfoort, L Smith, YW Teh, Y Gal
International conference on machine learning, 9690-9700, 2020
2682020
Galaxy Zoo: probabilistic morphology through Bayesian CNNs and active learning
M Walmsley, L Smith, C Lintott, Y Gal, S Bamford, H Dickinson, L Fortson, ...
Monthly Notices of the Royal Astronomical Society 491 (2), 1554-1574, 2020
1012020
A systematic comparison of Bayesian deep learning robustness in diabetic retinopathy tasks
A Filos, S Farquhar, AN Gomez, TGJ Rudner, Z Kenton, L Smith, ...
arXiv preprint arXiv:1912.10481, 2019
762019
Galaxy Zoo DECaLS: Detailed visual morphology measurements from volunteers and deep learning for 314 000 galaxies
M Walmsley, C Lintott, T Géron, S Kruk, C Krawczyk, KW Willett, ...
Monthly Notices of the Royal Astronomical Society 509 (3), 3966-3988, 2022
492022
Towards global flood mapping onboard low cost satellites with machine learning
G Mateo-Garcia, J Veitch-Michaelis, L Smith, SV Oprea, G Schumann, ...
Scientific reports 11 (1), 1-12, 2021
492021
Amphiphilic π-Allyliridium C,O-Benzoates Enable Regio- and Enantioselective Amination of Branched Allylic Acetates Bearing Linear Alkyl Groups
AT Meza, T Wurm, L Smith, SW Kim, JR Zbieg, CE Stivala, MJ Krische
Journal of the American Chemical Society 140 (4), 1275-1279, 2018
452018
On feature collapse and deep kernel learning for single forward pass uncertainty
J van Amersfoort, L Smith, A Jesson, O Key, Y Gal
arXiv preprint arXiv:2102.11409, 2021
422021
Sufficient conditions for idealised models to have no adversarial examples: a theoretical and empirical study with bayesian neural networks
Y Gal, L Smith
arXiv preprint arXiv:1806.00667, 2018
352018
Improving deterministic uncertainty estimation in deep learning for classification and regression
J van Amersfoort, L Smith, A Jesson, O Key, Y Gal
arXiv preprint arXiv:2102.11409 2 (3), 4, 2021
342021
Liberty or depth: Deep bayesian neural nets do not need complex weight posterior approximations
S Farquhar, L Smith, Y Gal
Advances in Neural Information Processing Systems 33, 4346-4357, 2020
342020
Benchmarking Bayesian deep learning with diabetic retinopathy diagnosis
A Filos, S Farquhar, AN Gomez, TGJ Rudner, Z Kenton, L Smith, ...
Preprint at https://arxiv. org/abs/1912.10481, 2019
182019
Uncertainty quantification for virtual diagnostic of particle accelerators
O Convery, L Smith, Y Gal, A Hanuka
Physical Review Accelerators and Beams 24 (7), 074602, 2021
112021
Idealised bayesian neural networks cannot have adversarial examples: Theoretical and empirical study
Y Gal, L Smith
arXiv preprint arXiv:1806.00667, 2018
72018
Try depth instead of weight correlations: Mean-field is a less restrictive assumption for deeper networks
S Farquhar, L Smith, Y Gal
arXiv preprint arXiv:2002.03704, 2020
52020
Flood detection on low cost orbital hardware
G Mateo-Garcia, S Oprea, L Smith, J Veitch-Michaelis, G Schumann, ...
arXiv preprint arXiv:1910.03019, 2019
52019
Can convolutional ResNets approximately preserve input distances? A frequency analysis perspective
L Smith, J van Amersfoort, H Huang, S Roberts, Y Gal
arXiv preprint arXiv:2106.02469, 2021
42021
Capsule Networks--A Probabilistic Perspective
L Smith, L Schut, Y Gal, M van der Wilk
arXiv preprint arXiv:2004.03553, 2020
42020
Try depth instead of weight correlations: Mean field is a less restrictive assumption for variational inference in deep networks
S Farquhar, L Smith, Y Gal
Bayesian Deep Learning Workshop At NeurIPS, 2020
42020
An example of HSE's assessment of major hazards as an aid to planning control by local authorities
MF Pantony, LM Smith
Institution of Chemical Engineers symposium series, 377-395, 1982
31982
The system can't perform the operation now. Try again later.
Articles 1–20