Volgen
nariman mahdavi
nariman mahdavi
Research Scientist, CSIRO Energy
Geverifieerd e-mailadres voor csiro.au
Titel
Geciteerd door
Geciteerd door
Jaar
Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy
J Lu, J Kurths, J Cao, N Mahdavi, C Huang
IEEE Transactions on Neural Networks and Learning Systems 23 (2), 285-292, 2011
3962011
Model predictive control of distributed air-conditioning loads to compensate fluctuations in solar power
N Mahdavi, JH Braslavsky, MM Seron, SR West
IEEE Transactions on Smart Grid 8 (6), 3055-3065, 2017
1082017
Pinning impulsive synchronization of complex dynamical networks
N Mahdavi, MB Menhaj, J Kurths, J Lu, A Afshar
International Journal of Bifurcation and Chaos 22 (10), 1250239, 2012
642012
Mapping the effect of ambient temperature on the power demand of populations of air conditioners
N Mahdavi, JH Braslavsky, C Perfumo
IEEE Transactions on Smart Grid 9 (3), 1540-1550, 2016
612016
Fuzzy complex dynamical networks and its synchronization
N Mahdavi, MB Menhaj, J Kurths, J Lu
IEEE Transactions on Cybernetics 43 (2), 648-659, 2013
412013
Modelling and control of ensembles of variable-speed air conditioning loads for demand response
N Mahdavi, JH Braslavsky
IEEE Transactions on Smart Grid 11 (5), 4249-4260, 2020
312020
A new set of sufficient conditions based on coupling parameters for synchronization of Hopfield like chaotic neural networks
N Mahdavi, MB Menhaj
International Journal of Control, Automation and Systems 9, 104-111, 2011
192011
A combination method for short term load forecasting used in Iran electricity market by NeuroFuzzy, Bayesian and finding similar days methods
S Barghinia, S Kamankesh, N Mahdavi, AH Vahabie, AA Gorji
2008 5th International Conference on the European Electricity Market, 1-6, 2008
142008
Short-term load forecasting for special days using bayesian neural networks
N Mahdavi, MB Menhaj, S Barghinia
2006 IEEE PES Power Systems Conference and Exposition, 1518-1522, 2006
112006
Bayesian parameter estimation for direct load control of populations of air conditioners
N Mahdavi, C Perfumo, JH Braslavsky
IFAC Proceedings Volumes 47 (3), 9924-9929, 2014
62014
Towards load control of populations of air conditioners with guaranteed comfort margins
N Mahdavi, C Perfumo, JH Braslavsky
IFAC Proceedings Volumes 47 (3), 9930-9935, 2014
62014
A novel robust impulsive chaos synchronization approach for uncertain complex dynamical networks
NM Mazdeh, MB Menhaj, HA Talebi
IEICE transactions on fundamentals of electronics, communications and …, 2009
62009
An analytical model for demand response of variable-speed air conditioners
BJC van Putten, N Mahdavi, JH Braslavsky
IFAC-PapersOnLine 51 (28), 426-431, 2018
52018
Machine learning based novel ensemble learning framework for electricity operational forecasting
D Weeraddana, NLD Khoa, N Mahdavi
Electric Power Systems Research 201, 107477, 2021
42021
Impulsive control for the synchronization of stochastic dynamical networks
J Lu, J Kurths, N Mahdavi, J Cao
Proceedings of the Joint INDS'11 & ISTET'11, 1-5, 2011
32011
A variable structure neural network model for mid-term load forecasting of Iran national power system
N Mahdavi, AA Gorji, MB Menhaj, S Barghinia
2008 IEEE International Joint Conference on Neural Networks (IEEE World …, 2008
32008
Load balancing in low-voltage distribution networks via optimizing residential phase connections
B Liu, F Geth, N Mahdavi, J Zhong
2021 IEEE PES Innovative Smart Grid Technologies-Asia (ISGT Asia), 1-5, 2021
22021
Quantifying maximum controllable energy demand in ensembles of air conditioning loads
N Mahdavi, JH Braslavsky, R Heersink
2017 IEEE 56th Annual Conference on Decision and Control (CDC), 1407-1412, 2017
22017
Machine learning method for day classification to understand thermostatically controlled load demand
Y Guo, N Mahdavi
2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), 1-5, 2017
22017
Inference of temperature-dependent loads and solar generation capacity from aggregate demand data
N Mahdavi, J Braslavsky, C Perfumo
CSIRO Energy (produced for the Department of Industry, Innovation and Science), 2016
22016
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20