Follow
Yunhao Tang
Yunhao Tang
Research Scientist, DeepMind
Verified email at columbia.edu - Homepage
Title
Cited by
Cited by
Year
Reinforcement learning for integer programming: Learning to cut
Y Tang, S Agrawal, Y Faenza
International conference on machine learning, 9367-9376, 2020
1122020
Es-maml: Simple hessian-free meta learning
X Song, W Gao, Y Yang, K Choromanski, A Pacchiano, Y Tang
arXiv preprint arXiv:1910.01215, 2019
892019
Discretizing continuous action space for on-policy optimization
Y Tang, S Agrawal
Proceedings of the aaai conference on artificial intelligence 34 (04), 5981-5988, 2020
782020
Monte-Carlo tree search as regularized policy optimization
JB Grill, F Altché, Y Tang, T Hubert, M Valko, I Antonoglou, R Munos
International Conference on Machine Learning, 3769-3778, 2020
532020
From complexity to simplicity: Adaptive es-active subspaces for blackbox optimization
KM Choromanski, A Pacchiano, J Parker-Holder, Y Tang, V Sindhwani
Advances in Neural Information Processing Systems 32, 2019
422019
Orthogonal estimation of wasserstein distances
M Rowland, J Hron, Y Tang, K Choromanski, T Sarlos, A Weller
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
342019
Provably robust blackbox optimization for reinforcement learning
K Choromanski, A Pacchiano, J Parker-Holder, Y Tang, D Jain, Y Yang, ...
CoRR, abs/1903.02993, 2019
33*2019
Exploration by distributional reinforcement learning
Y Tang, S Agrawal
arXiv preprint arXiv:1805.01907, 2018
322018
Boosting trust region policy optimization by normalizing flows policy
Y Tang, S Agrawal
arXiv preprint arXiv:1809.10326, 2018
302018
Learning to Score Behaviors for Guided Policy Optimization
A Pacchiano, J Parker-Holder, Y Tang, A Choromanska, K Choromanski, ...
arXiv preprint arXiv:1906.04349, 2019
272019
Byol-explore: Exploration by bootstrapped prediction
Z Guo, S Thakoor, M Pîslar, B Avila Pires, F Altché, C Tallec, A Saade, ...
Advances in neural information processing systems 35, 31855-31870, 2022
182022
Self-imitation learning via generalized lower bound q-learning
Y Tang
Advances in neural information processing systems 33, 13964-13975, 2020
162020
Variational deep q network
Y Tang, A Kucukelbir
arXiv preprint arXiv:1711.11225, 2017
162017
Revisiting Peng’s Q() for Modern Reinforcement Learning
T Kozuno, Y Tang, M Rowland, R Munos, S Kapturowski, W Dabney, ...
International Conference on Machine Learning, 5794-5804, 2021
142021
Taylor expansion policy optimization
Y Tang, M Valko, R Munos
International Conference on Machine Learning, 9397-9406, 2020
142020
Hindsight expectation maximization for goal-conditioned reinforcement learning
Y Tang, A Kucukelbir
International Conference on Artificial Intelligence and Statistics, 2863-2871, 2021
132021
Implicit policy for reinforcement learning
Y Tang, S Agrawal
arXiv preprint arXiv:1806.06798, 2018
112018
Variance reduction for evolution strategies via structured control variates
Y Tang, K Choromanski, A Kucukelbir
International Conference on Artificial Intelligence and Statistics, 646-656, 2020
102020
Online hyper-parameter tuning in off-policy learning via evolutionary strategies
Y Tang, K Choromanski
arXiv preprint arXiv:2006.07554, 2020
92020
Unifying gradient estimators for meta-reinforcement learning via off-policy evaluation
Y Tang, T Kozuno, M Rowland, R Munos, M Valko
Advances in Neural Information Processing Systems 34, 5303-5315, 2021
82021
The system can't perform the operation now. Try again later.
Articles 1–20