Yunhao Tang
Yunhao Tang
PhD student, Columbia University
Geverifieerd e-mailadres voor columbia.edu - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
ES-MAML: Simple Hessian-Free Meta Learning
X Song, W Gao, Y Yang, K Choromanski, A Pacchiano, Y Tang
arXiv preprint arXiv:1910.01215, 2019
452019
Reinforcement learning for integer programming: Learning to cut
Y Tang, S Agrawal, Y Faenza
International Conference on Machine Learning, 9367-9376, 2020
362020
Discretizing continuous action space for on-policy optimization
Y Tang, S Agrawal
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 5981-5988, 2020
332020
From complexity to simplicity: Adaptive es-active subspaces for blackbox optimization
K Choromanski, A Pacchiano, J Parker-Holder, Y Tang
arXiv preprint arXiv:1903.04268, 2019
242019
Monte-Carlo tree search as regularized policy optimization
JB Grill, F Altché, Y Tang, T Hubert, M Valko, I Antonoglou, R Munos
International Conference on Machine Learning, 3769-3778, 2020
202020
Boosting Trust Region Policy Optimization by Normalizing Flows Policy
Y Tang, S Agrawal
arXiv preprint arXiv:1809.10326, 2018
202018
Provably robust blackbox optimization for reinforcement learning
K Choromanski, A Pacchiano, J Parker-Holder, Y Tang, D Jain, Y Yang, ...
CoRR, abs/1903.02993, 2019
19*2019
Exploration by Distributional Reinforcement Learning
Y Tang, S Agrawal
arXiv preprint arXiv:1805.01907, 2018
192018
Orthogonal estimation of wasserstein distances
M Rowland, J Hron, Y Tang, K Choromanski, T Sarlos, A Weller
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
132019
Variational Deep Q Network
Y Tang, A Kucukelbir
arXiv preprint arXiv:1711.11225, 2017
112017
Implicit Policy for Reinforcement Learning
Y Tang, S Agrawal
arXiv preprint arXiv:1806.06798, 2018
92018
Learning to Score Behaviors for Guided Policy Optimization
A Pacchiano, J Parker-Holder, Y Tang, A Choromanska, K Choromanski, ...
arXiv preprint arXiv:1906.04349, 2019
7*2019
KAMA-NNs: low-dimensional rotation based neural networks
K Choromanski, A Pacchiano, J Pennington, Y Tang
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
72019
Self-imitation learning via generalized lower bound q-learning
Y Tang
arXiv preprint arXiv:2006.07442, 2020
62020
Variance reduction for evolution strategies via structured control variates
Y Tang, K Choromanski, A Kucukelbir
International Conference on Artificial Intelligence and Statistics, 646-656, 2020
62020
Taylor expansion policy optimization
Y Tang, M Valko, R Munos
International Conference on Machine Learning, 9397-9406, 2020
52020
Discrete action on-policy learning with action-value critic
Y Yue, Y Tang, M Yin, M Zhou
International Conference on Artificial Intelligence and Statistics, 1977-1987, 2020
42020
ES-ENAS: Combining Evolution Strategies with Neural Architecture Search at No Extra Cost for Reinforcement Learning
X Song, K Choromanski, J Parker-Holder, Y Tang, D Peng, D Jain, W Gao, ...
arXiv preprint arXiv:2101.07415, 2021
22021
Online Hyper-parameter Tuning in Off-policy Learning via Evolutionary Strategies
Y Tang, K Choromanski
arXiv preprint arXiv:2006.07554, 2020
22020
Structured Monte Carlo Sampling for Nonisotropic Distributions via Determinantal Point Processes
K Choromanski, A Pacchiano, J Parker-Holder, Y Tang
arXiv preprint arXiv:1905.12667, 2019
22019
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20