Follow
Tom Viering
Tom Viering
Verified email at tudelft.nl - Homepage
Title
Cited by
Cited by
Year
The shape of learning curves: a review
T Viering, M Loog
IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (6), 7799-7819, 2022
1602022
A brief prehistory of double descent
M Loog, T Viering, A Mey, JH Krijthe, DMJ Tax
Proceedings of the National Academy of Sciences 117 (20), 10625-10626, 2020
832020
Minimizers of the empirical risk and risk monotonicity
M Loog, T Viering, A Mey
Advances in Neural Information Processing Systems 32, 2019
282019
Open problem: Monotonicity of learning
T Viering, A Mey, M Loog
Conference on Learning Theory, 3198-3201, 2019
262019
LCDB 1.0: An extensive learning curves database for classification tasks
F Mohr, TJ Viering, M Loog, JN van Rijn
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2022
222022
How to manipulate cnns to make them lie: the gradcam case
T Viering, Z Wang, M Loog, E Eisemann
arXiv preprint arXiv:1907.10901, 2019
222019
Is Wikipedia succeeding in reducing gender bias? Assessing changes in gender bias in Wikipedia using word embeddings
KG Schmahl, TJ Viering, S Makrodimitris, AN Jahfari, D Tax, M Loog
Proceedings of the Fourth Workshop on Natural Language Processing and …, 2020
192020
Making learners (more) monotone
TJ Viering, A Mey, M Loog
International Symposium on Intelligent Data Analysis, 535-547, 2020
102020
Nuclear discrepancy for single-shot batch active learning
TJ Viering, JH Krijthe, M Loog
Machine Learning 108 (8), 1561-1599, 2019
82019
A survey of learning curves with bad behavior: or how more data need not lead to better performance
M Loog, T Viering
arXiv preprint arXiv:2211.14061, 2022
42022
The unreasonable effectiveness of early discarding after one epoch in neural network hyperparameter optimization
R Egele, F Mohr, T Viering, P Balaprakash
Neurocomputing, 127964, 2024
32024
Nuclear discrepancy for active learning
TJ Viering, JH Krijthe, M Loog
arXiv preprint arXiv:1706.02645, 2017
22017
On Safety in Machine Learning
TJ Viering
TU Delft, 2023
12023
On Safety in Machine Learning
TJ Viering
TU Delft, 2023
12023
A distribution dependent and independent complexity analysis of manifold regularization
A Mey, TJ Viering, M Loog
International Symposium on Intelligent Data Analysis, 326-338, 2020
12020
Global patterns in vegetation accessible subsurface water storage emerge from spatially varying importance of individual drivers
F van Oorschot, M Hrachowitz, T Viering, A Alessandri, RJ van der Ent
Environmental Research Letters 19 (12), 124018, 2024
2024
How catchment ecosystems globally manage root water access under different (climate) conditions
F van Oorschot, R van der Ent, T Viering, A Alessandri, M Hrachowitz
EGU24, 2024
2024
Different approaches to fitting and extrapolating the learning curve
D Kim, T Viering, M Loog
unpublished, 2022
2022
To Tune or not to Tune: Hyperparameter Influence on the Learning Curve
P Bhaskaran, T Viering
2022
Is the batch size affecting the performance of Regression CNNs?
J Lamon, Y KATO, T TURAN, T VIERING, Z WANG, M LOOG, D TAX
2021
The system can't perform the operation now. Try again later.
Articles 1–20