Volgen
Tom Viering
Tom Viering
Geverifieerd e-mailadres voor tudelft.nl - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
The shape of learning curves: a review
T Viering, M Loog
IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (6), 7799-7819, 2022
1372022
A brief prehistory of double descent
M Loog, T Viering, A Mey, JH Krijthe, DMJ Tax
Proceedings of the National Academy of Sciences 117 (20), 10625-10626, 2020
782020
Minimizers of the empirical risk and risk monotonicity
M Loog, T Viering, A Mey
Advances in Neural Information Processing Systems 32, 2019
262019
Open problem: Monotonicity of learning
T Viering, A Mey, M Loog
Conference on Learning Theory, 3198-3201, 2019
232019
How to manipulate cnns to make them lie: the gradcam case
T Viering, Z Wang, M Loog, E Eisemann
arXiv preprint arXiv:1907.10901, 2019
212019
Is Wikipedia succeeding in reducing gender bias? Assessing changes in gender bias in Wikipedia using word embeddings
KG Schmahl, TJ Viering, S Makrodimitris, AN Jahfari, D Tax, M Loog
Proceedings of the Fourth Workshop on Natural Language Processing and …, 2020
192020
LCDB 1.0: An extensive learning curves database for classification tasks
F Mohr, TJ Viering, M Loog, JN van Rijn
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2022
152022
Making learners (more) monotone
TJ Viering, A Mey, M Loog
International Symposium on Intelligent Data Analysis, 535-547, 2020
102020
Nuclear discrepancy for single-shot batch active learning
TJ Viering, JH Krijthe, M Loog
Machine Learning 108 (8), 1561-1599, 2019
82019
A survey of learning curves with bad behavior: or how more data need not lead to better performance
M Loog, T Viering
arXiv preprint arXiv:2211.14061, 2022
42022
The unreasonable effectiveness of early discarding after one epoch in neural network hyperparameter optimization
R Egele, F Mohr, T Viering, P Balaprakash
Neurocomputing, 127964, 2024
22024
Nuclear discrepancy for active learning
TJ Viering, JH Krijthe, M Loog
arXiv preprint arXiv:1706.02645, 2017
22017
On Safety in Machine Learning
TJ Viering
TU Delft, 2023
12023
On Safety in Machine Learning
TJ Viering
TU Delft, 2023
12023
A distribution dependent and independent complexity analysis of manifold regularization
A Mey, TJ Viering, M Loog
International Symposium on Intelligent Data Analysis, 326-338, 2020
12020
Different Approaches to Fitting and Extrapolating the Learning Curve
D Kim, T Viering
2022
To Tune or not to Tune: Hyperparameter Influence on the Learning Curve
P Bhaskaran, T Viering
2022
Active Learning by Discrepancy Minimization: A Comparison of Active Learning Methods Motivated by Generalization Bounds
TJ Viering
2016
From Epoch to Sample Size: Developing New Data-driven Priors for Learning Curve Prior-Fitted Networks
TJ Viering, S Adriaensen, H Rakotoarison, F Hutter
AutoML Conference 2024 (Workshop Track), 0
Finding Non-Convex Classification Learning Curves by Estimating Convexity
K Gogora, T Viering
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20