Quasi--Monte Carlo integration for affine-parametric, elliptic PDEs: Local supports and product weights RN Gantner, L Herrmann, C Schwab SIAM Journal on Numerical Analysis 56 (1), 111-135, 2018 | 42 | 2018 |
Deep neural network approximation for high-dimensional elliptic PDEs with boundary conditions P Grohs, L Herrmann IMA Journal of Numerical Analysis 42 (3), 2055-2082, 2022 | 38 | 2022 |
Deep neural network expression of posterior expectations in Bayesian PDE inversion L Herrmann, C Schwab, J Zech Inverse Problems 36 (12), 125011, 2020 | 30* | 2020 |
Multilevel quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients L Herrmann, C Schwab ESAIM: Mathematical Modelling and Numerical Analysis 53 (5), 1507-1552, 2019 | 29 | 2019 |
QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights L Herrmann, C Schwab Numerische Mathematik 141, 63-102, 2019 | 23* | 2019 |
Numerical analysis of lognormal diffusions on the sphere L Herrmann, A Lang, C Schwab Stochastics and Partial Differential Equations: Analysis and Computations 6 …, 2018 | 21 | 2018 |
Multilevel QMC with product weights for affine-parametric, elliptic PDEs RN Gantner, L Herrmann, C Schwab Contemporary Computational Mathematics-a celebration of the 80th birthday of …, 2018 | 21* | 2018 |
Multilevel approximation of Gaussian random fields: Fast simulation L Herrmann, K Kirchner, C Schwab Mathematical Models and Methods in Applied Sciences 30 (1), 181-223, 2020 | 17 | 2020 |
Multilevel quasi-Monte Carlo uncertainty quantification for advection-diffusion-reaction L Herrmann, C Schwab Monte Carlo and Quasi-Monte Carlo Methods: MCQMC 2018, Rennes, France, July …, 2020 | 12* | 2020 |
Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems L Herrmann, M Keller, C Schwab Mathematics of Computation 90 (330), 1831-1860, 2021 | 10 | 2021 |
Constructive deep ReLU neural network approximation L Herrmann, JAA Opschoor, C Schwab Journal of Scientific Computing 90 (2), 75, 2022 | 9 | 2022 |
Strong convergence analysis of iterative solvers for random operator equations L Herrmann Calcolo 56 (4), 46, 2019 | 8 | 2019 |
Deep neural network approximation for high-dimensional parabolic Hamilton-Jacobi-Bellman equations P Grohs, L Herrmann arXiv preprint arXiv:2103.05744, 2021 | 7 | 2021 |
QMC algorithms with product weights for lognormal-parametric, elliptic PDEs L Herrmann, C Schwab Monte Carlo and Quasi-Monte Carlo Methods: MCQMC 2016, Stanford, CA, August …, 2018 | 7* | 2018 |
Multilevel approximation of Gaussian random fields: Covariance compression, estimation and spatial prediction H Harbrecht, L Herrmann, K Kirchner, C Schwab arXiv preprint arXiv:2103.04424, 2021 | 6 | 2021 |
Uncertainty quantification for spectral fractional diffusion: Sparsity analysis of parametric solutions L Herrmann, C Schwab, J Zech SIAM/ASA Journal on Uncertainty Quantification 7 (3), 913-947, 2019 | 5 | 2019 |
Quasi-Monte Carlo integration in uncertainty quantification for PDEs with log-Gaussian random field inputs L Herrmann ETH Zurich, 2019 | 4 | 2019 |
Neural and gpc operator surrogates: construction and expression rate bounds L Herrmann, C Schwab, J Zech arXiv preprint arXiv:2207.04950, 2022 | 3 | 2022 |
Isotropic random fields on the sphere—Stochastic heat equation and regularity of random elliptic PDEs L Herrmann Master's thesis, ETH Zürich, 2013 | 3* | 2013 |
Assessing the heterogeneity in the transmission of infectious diseases from time series of epidemiological data G Schneckenreither, L Herrmann, R Reisenhofer, N Popper, P Grohs medRxiv, 2022.02. 21.22271241, 2022 | 1 | 2022 |