James J DiCarlo
James J DiCarlo
Verified email at
Cited by
Cited by
Performance-optimized hierarchical models predict neural responses in higher visual cortex
DLK Yamins, H Hong, CF Cadieu, EA Solomon, D Seibert, JJ DiCarlo
Proceedings of the national academy of sciences 111 (23), 8619-8624, 2014
How does the brain solve visual object recognition?
JJ DiCarlo, D Zoccolan, NC Rust
Neuron 73 (3), 415-434, 2012
Using goal-driven deep learning models to understand sensory cortex
DLK Yamins, JJ DiCarlo
Nature neuroscience 19 (3), 356-365, 2016
Untangling invariant object recognition
JJ DiCarlo, DD Cox
Trends in cognitive sciences 11 (8), 333-341, 2007
Fast readout of object identity from macaque inferior temporal cortex
CP Hung, G Kreiman, T Poggio, JJ DiCarlo
Science 310 (5749), 863-866, 2005
Deep neural networks rival the representation of primate IT cortex for core visual object recognition
CF Cadieu, H Hong, DLK Yamins, N Pinto, D Ardila, EA Solomon, ...
PLoS computational biology 10 (12), e1003963, 2014
Why is real-world visual object recognition hard?
N Pinto, DD Cox, JJ DiCarlo
PLoS computational biology 4 (1), e27, 2008
Brain-score: Which artificial neural network for object recognition is most brain-like?
M Schrimpf, J Kubilius, H Hong, NJ Majaj, R Rajalingham, EB Issa, K Kar, ...
BioRxiv, 407007, 2018
Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior
K Kar, J Kubilius, K Schmidt, EB Issa, JJ DiCarlo
Nature neuroscience 22 (6), 974-983, 2019
Neural population control via deep image synthesis
P Bashivan, K Kar, JJ DiCarlo
Science 364 (6439), eaav9436, 2019
Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT
NC Rust, JJ DiCarlo
Journal of Neuroscience 30 (39), 12978-12995, 2010
Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks
R Rajalingham, EB Issa, P Bashivan, K Kar, K Schmidt, JJ DiCarlo
Journal of Neuroscience 38 (33), 7255-7269, 2018
A high-throughput screening approach to discovering good forms of biologically inspired visual representation
N Pinto, D Doukhan, JJ DiCarlo, DD Cox
PLoS computational biology 5 (11), e1000579, 2009
Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex
G Kreiman, CP Hung, A Kraskov, RQ Quiroga, T Poggio, JJ DiCarlo
Neuron 49 (3), 433-445, 2006
Explicit information for category-orthogonal object properties increases along the ventral stream
H Hong, DLK Yamins, NJ Majaj, JJ DiCarlo
Nature neuroscience 19 (4), 613-622, 2016
Unsupervised neural network models of the ventral visual stream
C Zhuang, S Yan, A Nayebi, M Schrimpf, MC Frank, JJ DiCarlo, ...
Proceedings of the National Academy of Sciences 118 (3), e2014196118, 2021
Stimulus configuration, classical conditioning, and hippocampal function.
NA Schmajuk, JJ DiCarlo
Psychological review 99 (2), 268, 1992
Unsupervised natural experience rapidly alters invariant object representation in visual cortex
N Li, JJ DiCarlo
science 321 (5895), 1502-1507, 2008
Discrimination training alters object representations in human extrastriate cortex
HPO de Beeck, CI Baker, JJ DiCarlo, NG Kanwisher
Journal of Neuroscience 26 (50), 13025-13036, 2006
Threedworld: A platform for interactive multi-modal physical simulation
C Gan, J Schwartz, S Alter, D Mrowca, M Schrimpf, J Traer, J De Freitas, ...
arXiv preprint arXiv:2007.04954, 2020
The system can't perform the operation now. Try again later.
Articles 1–20