Follow
Zheqing (Bill) Zhu
Title
Cited by
Cited by
Year
Multi-Agent Safe Planning with Gaussian Processes
Z Zhu, E Biyik, D Sadigh
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2020
17*2020
Scalable Neural Contextual Bandit for Recommender Systems
Z Zhu, B Van Roy
32nd ACM International Conference on Information and Knowledge Management …, 2023
122023
Evaluating Online Bandit Exploration In Large-Scale Recommender System
H Guo, R Naeff, A Nikulkov, Z Zhu
KDD-23 Workshop on Multi-Armed Bandits and Reinforcement Learning: Advancing …, 2023
112023
Deep Exploration for Recommendation Systems
Z Zhu, B Van Roy
17th ACM Conference on Recommender Systems (RecSys 2023), 2023
92023
Optimizing Long-term Value for Auction-Based Recommender Systems via On-Policy Reinforcement Learning
R Xu, J Bhandari, D Korenkevych, F Liu, Y He, A Nikulkov, Z Zhu
17th ACM Conference on Recommender Systems (RecSys 2023), 2023
72023
IQL-TD-MPC: Implicit Q-Learning for Hierarchical Model Predictive Control
Y Xu, R Chitnis, BT Hashemi, L Lehnert, U Dogan, Z Zhu, O Delalleau
2024 IEEE International Conference on Robotics and Automation, 2024
6*2024
Two-tiered online optimization of region-wide datacenter resource allocation via deep reinforcement learning
CL Chen, H Zhou, J Chen, M Pedramfar, V Aggarwal, T Lan, Z Zhu, ...
arXiv preprint arXiv:2306.17054, 2023
62023
Uncovering the global terrorism network
J Alison*, L Deng*, Z Zhu*
4*2017
Non-Stationary Contextual Bandit Learning via Neural Predictive Ensemble Sampling
Z Zhu, Y Liu, X Kuang, B Van Roy
arXiv preprint arXiv:2310.07786, 2023
32023
Pearl: A Production-ready Reinforcement Learning Agent
Z Zhu, RS Braz, J Bhandari, D Jiang, Y Wan, Y Efroni, L Wang, R Xu, ...
arXiv preprint arXiv:2312.03814, 2023
22023
Offline Reinforcement Learning for Optimizing Production Bidding Policies
D Korenkevych, F Cheng, A Balakir, A Nikulkov, L Gao, Z Cen, Z Xu, ...
12023
Uncertainty of Joint Neural Contextual Bandit
H Guo, Z Zhu
arXiv preprint arXiv:2406.02515, 2024
2024
Learning to bid and rank together in recommendation systems
G Ji, W Jiang, J Li, FM Fahid, Z Chen, Y Li, J Xiao, C Bao, Z Zhu
Machine Learning 113 (5), 2559-2573, 2024
2024
Efficient Deep Reinforcement Learning for Recommender Systems
Z Zhu
https://searchworks.stanford.edu/view/in00000031069, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–14