Follow
Ramakrishna Vedantam
Ramakrishna Vedantam
Self Employed
Verified email at fb.com - Homepage
Title
Cited by
Cited by
Year
Grad-CAM: Why did you say that?
RR Selvaraju, A Das, R Vedantam, M Cogswell, D Parikh, D Batra
IEEE International Conference on Computer Vision (ICCV), 2017, 2016
14994*2016
CIDEr: Consensus-based Image Description Evaluation
R Vedantam, CL Zitnick, D Parikh
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 2014
35052014
Microsoft coco captions: Data collection and evaluation server
X Chen, H Fang, TY Lin, R Vedantam, S Gupta, P Dollár, CL Zitnick
arXiv preprint arXiv:1504.00325, 2015
18162015
Context-aware captions from context-agnostic supervision
R Vedantam, S Bengio, K Murphy, D Parikh, G Chechik
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 2017
1482017
Counting Everyday Objects in Everyday Scenes
P Chattopadhyay, R Vedantam, RS Ramprasaath, D Batra, D Parikh
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 2016
1402016
Generative Models of Visually Grounded Imagination
R Vedantam, I Fischer, J Huang, K Murphy
International Conference on Learning Representations (ICLR), 2018, 2018
1292018
Visual Word2Vec (vis-w2v): Learning Visually Grounded Word Embeddings Using Abstract Scenes
S Kottur, R Vedantam, JMF Moura, D Parikh
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 2015
1162015
Adopting abstract images for semantic scene understanding
CL Zitnick, R Vedantam, D Parikh
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2014
1002014
Learning Common Sense Through Visual Abstraction
R Vedantam, X Lin, T Batra, CL Zitnick, D Parikh
IEEE International Conference on Computer Vision (ICCV), 2015, 2015
942015
Probabilistic neural symbolic models for interpretable visual question answering
R Vedantam, K Desai, S Lee, M Rohrbach, D Batra, D Parikh
International Conference on Machine Learning, 6428-6437, 2019
722019
Sound-word2vec: Learning word representations grounded in sounds
AK Vijayakumar, R Vedantam, D Parikh
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017, 2017
292017
Learning optimal representations with the decodable information bottleneck
Y Dubois, D Kiela, DJ Schwab, R Vedantam
Advances in Neural Information Processing Systems 33, 18674-18690, 2020
272020
Curi: A benchmark for productive concept learning under uncertainty
R Vedantam, A Szlam, M Nickel, A Morcos, BM Lake
International Conference on Machine Learning, 10519-10529, 2021
192021
An empirical investigation of domain generalization with empirical risk minimizers
R Vedantam, D Lopez-Paz, DJ Schwab
Advances in Neural Information Processing Systems 34, 28131-28143, 2021
162021
Coat: Measuring object compositionality in emergent representations
S Xie, AS Morcos, SC Zhu, R Vedantam
International Conference on Machine Learning, 24388-24413, 2022
42022
DS-VIC: Unsupervised Discovery of Decision States for Transfer in RL
N Modhe, P Chattopadhyay, M Sharma, A Das, D Parikh, D Batra, ...
3*
Hyperbolic Image-Text Representations
K Desai, M Nickel, T Rajpurohit, J Johnson, R Vedantam
arXiv preprint arXiv:2304.09172, 2023
2023
Improving Selective Visual Question Answering by Learning From Your Peers
C Dancette, S Whitehead, R Maheshwary, R Vedantam, S Scherer, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–18