Follow
Gert-Jan Both
Gert-Jan Both
Pasqal
Verified email at cri-paris.org
Title
Cited by
Cited by
Year
DeepMoD: Deep learning for model discovery in noisy data
GJ Both, S Choudhury, P Sens, R Kusters
Journal of Computational Physics 428, 109985, 2021
522021
Low-loss YIG-based magnonic crystals with large tunable bandgaps
H Qin, GJ Both, SJ Hämäläinen, L Yao, S van Dijken
Nature communications 9 (1), 1-10, 2018
442018
Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces
S Paquay, GJ Both, P van der Schoot
Physical Review E 96 (1), 012611, 2017
132017
Temporal normalizing flows
GJ Both, R Kusters
arXiv preprint arXiv:1912.09092, 2019
82019
Sparsely constrained neural networks for model discovery of PDEs
GJ Both, G Vermarien, R Kusters
arXiv preprint arXiv:2011.04336, 2020
62020
Discovering PDEs from Multiple Experiments
G Tod, GJ Both, R Kusters
arXiv preprint arXiv:2109.11939, 2021
22021
Sparsistent model discovery
G Tod, GJ Both, R Kusters
arXiv preprint arXiv:2106.11936, 2021
12021
Model discovery in the sparse sampling regime
GJ Both, G Tod, R Kusters
arXiv preprint arXiv:2105.00400, 2021
12021
Model Discovery of Partial Differential Equations
GJ Both
Université Paris sciences et lettres, 2021
2021
Fully differentiable model discovery
GJ Both, R Kusters
arXiv preprint arXiv:2106.04886, 2021
2021
The system can't perform the operation now. Try again later.
Articles 1–10