Improved techniques for training gans T Salimans, I Goodfellow, W Zaremba, V Cheung, A Radford, X Chen Advances in neural information processing systems 29, 2016 | 6726 | 2016 |
Improving language understanding by generative pre-training A Radford, K Narasimhan, T Salimans, I Sutskever | 4048* | 2018 |
Weight normalization: A simple reparameterization to accelerate training of deep neural networks T Salimans, DP Kingma Advances in neural information processing systems 29, 2016 | 1473 | 2016 |
Improved variational inference with inverse autoregressive flow DP Kingma, T Salimans, R Jozefowicz, X Chen, I Sutskever, M Welling Advances in neural information processing systems 29, 2016 | 1392 | 2016 |
Evolution strategies as a scalable alternative to reinforcement learning T Salimans, J Ho, X Chen, S Sidor, I Sutskever arXiv preprint arXiv:1703.03864, 2017 | 1152 | 2017 |
Variational dropout and the local reparameterization trick DP Kingma, T Salimans, M Welling Advances in neural information processing systems 28, 2015 | 1083 | 2015 |
Dota 2 with large scale deep reinforcement learning C Berner, G Brockman, B Chan, V Cheung, P Dębiak, C Dennison, ... arXiv preprint arXiv:1912.06680, 2019 | 726 | 2019 |
Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications T Salimans, A Karpathy, X Chen, DP Kingma arXiv preprint arXiv:1701.05517, 2017 | 691 | 2017 |
Variational lossy autoencoder X Chen, DP Kingma, T Salimans, Y Duan, P Dhariwal, J Schulman, ... arXiv preprint arXiv:1611.02731, 2016 | 583 | 2016 |
Markov chain monte carlo and variational inference: Bridging the gap T Salimans, D Kingma, M Welling International Conference on Machine Learning, 1218-1226, 2015 | 518 | 2015 |
Improving GANs Using Optimal Transport T Salimans, H Zhang, A Radford, D Metaxas International Conference on Learning Representations (ICLR), 2018 | 219 | 2018 |
Fixed-form variational posterior approximation through stochastic linear regression T Salimans, DA Knowles Bayesian Analysis 8 (4), 837-882, 2013 | 214 | 2013 |
Axial attention in multidimensional transformers J Ho, N Kalchbrenner, D Weissenborn, T Salimans arXiv preprint arXiv:1912.12180, 2019 | 156 | 2019 |
How good is the bayes posterior in deep neural networks really? F Wenzel, K Roth, BS Veeling, J Świątkowski, L Tran, S Mandt, J Snoek, ... arXiv preprint arXiv:2002.02405, 2020 | 140 | 2020 |
Learning Montezuma’s Revenge from a single demonstration T Salimans, R Chen Deep RL Workshop, Neural Information Processing Systems (NeurIPS), 2018 | 90 | 2018 |
Metnet: A neural weather model for precipitation forecasting CK Sønderby, L Espeholt, J Heek, M Dehghani, A Oliver, T Salimans, ... arXiv preprint arXiv:2003.12140, 2020 | 84 | 2020 |
Dota 2 with large scale deep reinforcement learning CB OpenAI, G Brockman, B Chan, V Cheung, P Debiak, C Dennison, ... arXiv preprint arXiv:1912.06680 2, 2019 | 52 | 2019 |
Image super-resolution via iterative refinement C Saharia, J Ho, W Chan, T Salimans, DJ Fleet, M Norouzi arXiv preprint arXiv:2104.07636, 2021 | 44 | 2021 |
Variational diffusion models DP Kingma, T Salimans, B Poole, J Ho arXiv preprint arXiv:2107.00630, 2021 | 41 | 2021 |
Variable selection and functional form uncertainty in cross-country growth regressions T Salimans Journal of Econometrics 171 (2), 267-280, 2012 | 29 | 2012 |