Follow
Benjamin Sanderse
Title
Cited by
Cited by
Year
Review of computational fluid dynamics for wind turbine wake aerodynamics
B Sanderse, SP Pijl, B Koren
Wind Energy 14 (7), 799-819, 2011
6842011
Aerodynamics of wind turbine wakes
B Sanderse
Energy research Centre of the Netherlands, ECN-E-09-016, 2009
393*2009
Accuracy analysis of explicit Runge–Kutta methods applied to the incompressible Navier–Stokes equations
B Sanderse, B Koren
Journal of Computational Physics 231 (8), 3041-3063, 2012
992012
Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations
B Sanderse
Journal of Computational Physics 233, 100-131, 2013
802013
Non-linearly stable reduced-order models for incompressible flow with energy-conserving finite volume methods
B Sanderse
Journal of Computational Physics 421, 109736, 2020
182020
An Adaptive Minimum Spanning Tree Multielement Method for Uncertainty Quantification of Smooth and Discontinuous Responses
YV Halder, B Sanderse, B Koren
SIAM Journal on Scientific Computing 41 (6), A3624-A3648, 2019
142019
Bayesian model calibration with interpolating polynomials based on adaptively weighted Leja nodes
LMM van den Bos, B Sanderse, W Bierbooms, GJW van Bussel
arXiv preprint arXiv:1802.02035, 2018
132018
Boundary treatment for fourth-order staggered mesh discretizations of the incompressible Navier–Stokes equations
B Sanderse, R Verstappen, B Koren
Journal of Computational Physics 257, 1472-1505, 2014
122014
Analysis of time integration methods for the compressible two-fluid model for pipe flow simulations
B Sanderse, IE Smith, MHW Hendrix
International Journal of Multiphase Flow 95, 155-174, 2017
112017
Energy-Conserving Navier-Stokes Solver. Verification of steady laminar flows
B Sanderse
Energy research Centre of the Netherlands, ECN-E-11-042, 2011
112011
Adaptive sampling-based quadrature rules for efficient Bayesian prediction
LMM van den Bos, B Sanderse, W Bierbooms
Journal of Computational Physics 417, 109537, 2020
92020
Constraint-consistent Runge–Kutta methods for one-dimensional incompressible multiphase flow
B Sanderse, AEP Veldman
Journal of Computational Physics 384, 170-199, 2019
92019
Reduced order models for the incompressible Navier‐Stokes equations on collocated grids using a ‘discretize‐then‐project’approach
SK Star, B Sanderse, G Stabile, G Rozza, J Degroote
International Journal for Numerical Methods in Fluids 93 (8), 2694-2722, 2021
82021
Energy-conserving discretization methods for the incompressible Navier-Stokes equations: application to the simulation of wind-turbine wakes
B Sanderse
Technische Universiteit Eindhoven, 2013
82013
Uncertainty quantification and sensitivity analysis of COVID-19 exit strategies in an individual-based transmission model
F Gugole, LE Coffeng, W Edeling, B Sanderse, SJ de Vlas, D Crommelin
PLoS computational biology 17 (9), e1009355, 2021
72021
Generating nested quadrature rules with positive weights based on arbitrary sample sets
L van den Bos, B Sanderse, W Bierbooms, G van Bussel
SIAM/ASA Journal on Uncertainty Quantification 8 (1), 139-169, 2020
72020
A minimum-dissipation time integration strategy for large-eddy sim-ulation of incompressible turbulent flows
F Capuano, B Sanderse, EM De Angelis, G Coppola
72017
Global sensitivity analysis of model uncertainty in aeroelastic wind turbine models
P Kumar, B Sanderse, K Boorsma, M Caboni
Journal of Physics: Conference Series 1618 (4), 042034, 2020
62020
Machine Learning for Closure Models in Multiphase Flow Applications
J Buist, B Sanderse, Y van Halder, B Koren, G van Heijst
3rd International Conference on Uncertainty Quantification in Computational …, 2019
62019
Numerical simulation of roll waves in pipelines using the two-fluid model
B Sanderse, S Misra, S Dubinkina, R Henkes, CW Oosterlee
11th North American Conference on Multiphase Production Technology, 2018
62018
The system can't perform the operation now. Try again later.
Articles 1–20