Volgen
Kimia Nadjahi
Kimia Nadjahi
Postdoctoral Fellow at MIT CSAIL
Geverifieerd e-mailadres voor mit.edu
Titel
Geciteerd door
Geciteerd door
Jaar
Generalized sliced wasserstein distances
S Kolouri, K Nadjahi, U Simsekli, R Badeau, G Rohde
Advances in neural information processing systems 32, 2019
2812019
Statistical and topological properties of sliced probability divergences
K Nadjahi, A Durmus, L Chizat, S Kolouri, S Shahrampour, U Simsekli
Advances in Neural Information Processing Systems 33, 20802-20812, 2020
702020
Asymptotic guarantees for learning generative models with the sliced-Wasserstein distance
K Nadjahi, A Durmus, U Simsekli, R Badeau
Advances in Neural Information Processing Systems 32, 2019
632019
Approximate Bayesian computation with the sliced-Wasserstein distance
K Nadjahi, V De Bortoli, A Durmus, R Badeau, U Şimşekli
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020
352020
Safe policy improvement with soft baseline bootstrapping
K Nadjahi, R Laroche, R Tachet des Combes
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2020
352020
Fast approximation of the sliced-Wasserstein distance using concentration of random projections
K Nadjahi, A Durmus, PE Jacob, R Badeau, U Simsekli
Advances in Neural Information Processing Systems 34, 12411-12424, 2021
312021
Sliced-Wasserstein distance for large-scale machine learning: theory, methodology and extensions
K Nadjahi
Institut polytechnique de Paris, 2021
122021
Generalized sliced probability metrics
S Kolouri, K Nadjahi, S Shahrampour, U Şimşekli
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022
82022
Generalized sliced distances for probability distributions
S Kolouri, K Nadjahi, U Simsekli, S Shahrampour
arXiv preprint arXiv:2002.12537, 2020
62020
Shedding a PAC-Bayesian light on adaptive sliced-Wasserstein distances
R Ohana, K Nadjahi, A Rakotomamonjy, L Ralaivola
International Conference on Machine Learning, 26451-26473, 2023
52023
Unbalanced optimal transport meets sliced-Wasserstein
T Séjourné, C Bonet, K Fatras, K Nadjahi, N Courty
arXiv preprint arXiv:2306.07176, 2023
52023
ekli, and R
K Nadjahi, A Durmus, U Sims
Badeau,“Asymptotic Guarantees for Learning Generative Models with the Sliced …, 2019
42019
Federated Wasserstein Distance
A Rakotomamonjy, K Nadjahi, L Ralaivola
arXiv preprint arXiv:2310.01973, 2023
22023
Asymmetry in Low-Rank Adapters of Foundation Models
J Zhu, K Greenewald, K Nadjahi, HSO Borde, RB Gabrielsson, L Choshen, ...
arXiv preprint arXiv:2402.16842, 2024
12024
Slicing Mutual Information Generalization Bounds for Neural Networks
K Nadjahi, K Greenewald, RB Gabrielsson, J Solomon
2023
Soft Safe Policy Improvement with Baseline Bootstrapping
K Nadjahi, R Laroche, RT des Combes
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–16