Volgen
Julie Nutini
Julie Nutini
Senior Scientist at Planet Labs
Geverifieerd e-mailadres voor planet.com - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition
H Karimi, J Nutini, M Schmidt
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2016
13022016
Coordinate descent converges faster with the gauss-southwell rule than random selection
J Nutini, M Schmidt, I Laradji, M Friedlander, H Koepke
International Conference on Machine Learning, 1632-1641, 2015
2712015
A survey of non-gradient optimization methods in structural engineering
W Hare, J Nutini, S Tesfamariam
Advances in Engineering Software 59, 19-28, 2013
2282013
Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence
J Nutini, I Laradji, M Schmidt
arXiv preprint arXiv:1712.08859, 2017
93*2017
A derivative-free approximate gradient sampling algorithm for finite minimax problems
W Hare, J Nutini
Computational Optimization and Applications 56, 1-38, 2013
632013
Convergence rates for greedy Kaczmarz algorithms, and faster randomized Kaczmarz rules using the orthogonality graph
J Nutini, B Sepehry, I Laradji, M Schmidt, H Koepke, A Virani
arXiv preprint arXiv:1612.07838, 2016
622016
“Active-set complexity” of proximal gradient: How long does it take to find the sparsity pattern?
J Nutini, M Schmidt, W Hare
Optimization Letters 13, 645-655, 2019
472019
Are we there yet? manifold identification of gradient-related proximal methods
Y Sun, H Jeong, J Nutini, M Schmidt
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
362019
Optimizing damper connectors for adjacent buildings
K Bigdeli, W Hare, J Nutini, S Tesfamariam
Optimization and Engineering 17, 47-75, 2016
302016
Convergence rates for greedy Kaczmarz algorithms
J Nutini, B Sepehry, A Virani, I Laradji, M Schmidt, H Koepke
Conference on Uncertainty in Artificial Intelligence, 2016
182016
Greed is good: greedy optimization methods for large-scale structured problems
J Nutini
University of British Columbia, 2018
162018
Optimal design of damper connectors for adjacent buildings
K Bigdeli, W Hare, J Nutini, S Tesfamariam
Comput Struct, submitted for publication, 2013
22013
Convergence Rates for Greedy Kaczmarz Algorithms, and Faster Randomized Kaczmarz Rules Using the Orthogonality Graph
J Nutini, M Schmidt, B Sepehry, H Koepke, I Laradji, A Virani
J. Fourier Anal. Appl 15 (2), 262-278, 2009
22009
Putting the curvature back into sparse solvers
J Nutini
2013
A derivative-free approximate gradient sampling algorithm for finite minimax problems
JA Nutini
University of British Columbia, 2012
2012
“Active-set complexity” of proximal gradient
J Nutini, M Schmidt, W Hare
Graphical Newton for Huge-Block Coordinate Descent on Sparse Graphs
I Laradji, J Nutini, M Schmidt
A Comparison of Random Forests and Dropout Nets for Sign Language Recognition with the Kinect
N Jaques, J Nutini
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–18