Diederik P. Kingma
Diederik P. Kingma
Research Scientist, Google Brain
Geverifieerd e-mailadres voor google.com - Homepage
TitelGeciteerd doorJaar
Adam: A Method for Stochastic Optimization
DP Kingma, J Ba
Proceedings of the 3rd International Conference on Learning Representations …, 2014
196082014
Auto-Encoding Variational Bayes
DP Kingma, M Welling
Proceedings of the 2nd International Conference on Learning Representations …, 2013
43432013
Semi-Supervised Learning with Deep Generative Models
DP Kingma, S Mohamed, DJ Rezende, M Welling
Advances in Neural Information Processing Systems, 3581-3589, 2014
8592014
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
T Salimans, DP Kingma
Advances in Neural Information Processing Systems, 901-901, 2016
3762016
Improved Variational Inference with Inverse Autoregressive Flow
DP Kingma, T Salimans, R Jozefowicz, X Chen, I Sutskever, M Welling
Advances in Neural Information Processing Systems, 4743-4751, 2016
3112016
Variational Dropout and the Local Reparameterization Trick
DP Kingma, T Salimans, M Welling
Advances in Neural Information Processing Systems 28 (NIPS 2015), 2015
2722015
A method for stochastic optimization. arXiv 2014
DP Kingma, JA Ba
arXiv preprint arXiv:1412.6980, 2019
2302019
Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
T Salimans, DP Kingma, M Welling
Proceedings of the International Conference on Machine Learning (ICML), 2014
2112014
Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications
T Salimans, A Karpathy, X Chen, DP Kingma
arXiv preprint arXiv:1701.05517, 2017
148*2017
Variational lossy autoencoder
X Chen, DP Kingma, T Salimans, Y Duan, P Dhariwal, J Schulman, ...
arXiv preprint arXiv:1611.02731, 2016
1462016
Glow: Generative flow with invertible 1x1 convolutions
DP Kingma, P Dhariwal
Advances in Neural Information Processing Systems, 10236-10245, 2018
662018
Learning Sparse Neural Networks through Regularization
C Louizos, M Welling, DP Kingma
arXiv preprint arXiv:1712.01312, 2017
442017
Regularized Estimation of Image Statistics by Score Matching
DP Kingma, Y LeCun
Advances in Neural Information Processing Systems 23, 1126-1134, 2010
352010
Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets
DP Kingma, M Welling
Proceedings of the International Conference on Machine Learning (ICML), 2014
302014
A method for stochastic optimization. 2015
DP Kingma, JLB Adam
arXiv preprint arXiv:1412.6980, 0
24
Improving variational autoencoders with inverse autoregressive flow
D Kingma, T Salimans, R Josefowicz, X Chen, I Sutskever, M Welling
7Red Hook, NYCurran Associates, 2017
162017
Gpu kernels for block-sparse weights
S Gray, A Radford, DP Kingma
arXiv preprint arXiv:1711.09224, 2017
142017
Fast Gradient-based Inference With Continuous Latent Variable Models in Auxiliary Form
DP Kingma
arXiv preprint arXiv:1306.0733, 2013
132013
Variational Inference and Deep Learning: A New Synthesis (Ph.D. Thesis)
DP Kingma
Universiteit van Amsterdam, 2017
11*2017
A method for stochastic optimization. CoRR. 2014; abs/1412.6980
DP Kingma, BJ Adam
6
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20