Follow
Diederik P. Kingma
Diederik P. Kingma
Other namesDurk Kingma
Research Scientist, Google Brain
Verified email at google.com - Homepage
Title
Cited by
Cited by
Year
Adam: A Method for Stochastic Optimization
DP Kingma, J Ba
Proceedings of the 3rd International Conference on Learning Representations …, 2014
1482672014
Auto-Encoding Variational Bayes
DP Kingma, M Welling
arXiv preprint arXiv:1312.6114, 2013
278202013
Semi-Supervised Learning with Deep Generative Models
DP Kingma, S Mohamed, DJ Rezende, M Welling
Advances in Neural Information Processing Systems, 3581-3589, 2014
30192014
Glow: Generative Flow with Invertible 1x1 Convolutions
DP Kingma, P Dhariwal
Advances in Neural Information Processing Systems, 10215-10224, 2018
24252018
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
T Salimans, DP Kingma
Advances in Neural Information Processing Systems, 901-901, 2016
18592016
Improved Variational Inference with Inverse Autoregressive Flow
DP Kingma, T Salimans, R Jozefowicz, X Chen, I Sutskever, M Welling
Advances in Neural Information Processing Systems, 4743-4751, 2016
17402016
An Introduction to Variational Autoencoders
DP Kingma, M Welling
Foundations and Trends® in Machine Learning 12 (4), 307-392, 2019
15802019
Variational Dropout and the Local Reparameterization Trick
DP Kingma, T Salimans, M Welling
Advances in Neural Information Processing Systems 28 (NIPS 2015), 2015
13902015
Score-based generative modeling through stochastic differential equations
Y Song, J Sohl-Dickstein, DP Kingma, A Kumar, S Ermon, B Poole
arXiv preprint arXiv:2011.13456, 2020
11332020
Learning Sparse Neural Networks through Regularization
C Louizos, M Welling, DP Kingma
Proceedings of the International Conference on Learning Representations (ICLR), 2017
9222017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
T Salimans, A Karpathy, X Chen, DP Kingma
arXiv preprint arXiv:1701.05517, 2017
9192017
Variational Lossy Autoencoder
X Chen, DP Kingma, T Salimans, Y Duan, P Dhariwal, J Schulman, ...
arXiv preprint arXiv:1611.02731, 2016
6832016
Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
T Salimans, DP Kingma, M Welling
Proceedings of the International Conference on Machine Learning (ICML), 2014
6252014
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
I Khemakhem, DP Kingma, A Hyvärinen
The 23rd International Conference on Artificial Intelligence and Statistics …, 2019
3522019
Variational Diffusion Models
D Kingma, T Salimans, B Poole, J Ho
Advances in neural information processing systems 34, 21696-21707, 2021
2922021
VideoFlow: A Flow-Based Generative Model for Video
M Kumar, M Babaeizadeh, D Erhan, C Finn, S Levine, L Dinh, DP Kingma
Proceedings of the International Conference on Learning Representations (ICLR), 2019
193*2019
Imagen video: High definition video generation with diffusion models
J Ho, W Chan, C Saharia, J Whang, R Gao, A Gritsenko, DP Kingma, ...
arXiv preprint arXiv:2210.02303, 2022
1612022
GPU Kernels for Block-Sparse Weights
S Gray, A Radford, DP Kingma
1552017
How to train your energy-based models
Y Song, DP Kingma
arXiv preprint arXiv:2101.03288, 2021
1242021
Flow contrastive estimation of energy-based models
R Gao, E Nijkamp, DP Kingma, Z Xu, AM Dai, YN Wu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
862020
The system can't perform the operation now. Try again later.
Articles 1–20